
BROAD X NON-ELECTRIC CHILLER

MODEL SELECTION & DESIGN MANUAL

■ Function

Cooling, heating, hot water (dedicatedly or simultaneously)

Application

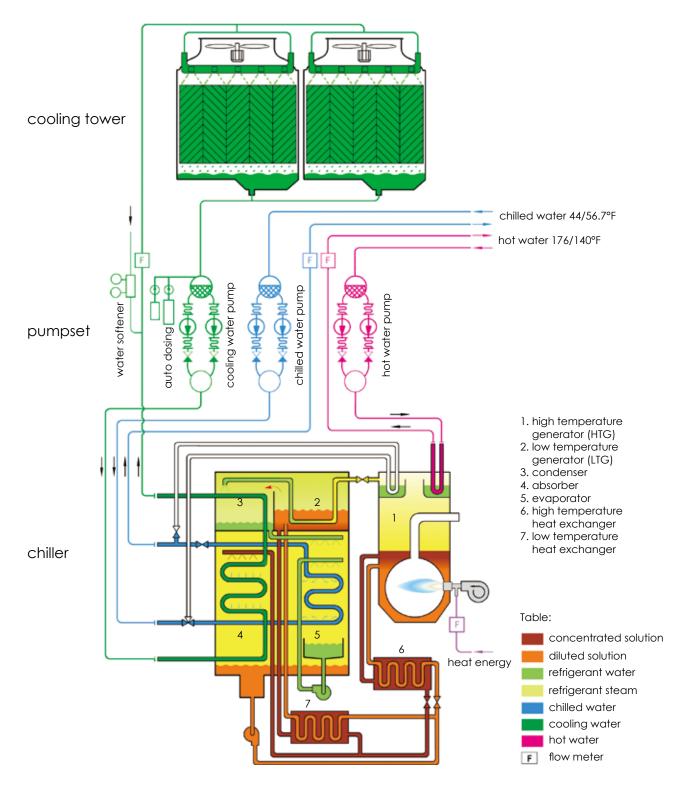
- Provide chilled/heating water for large-scale buildings Produce chilled water over 41°F
- and heating water below 203°F

Cooling capacity 6.6-3,307Rt(23-11,630kW)

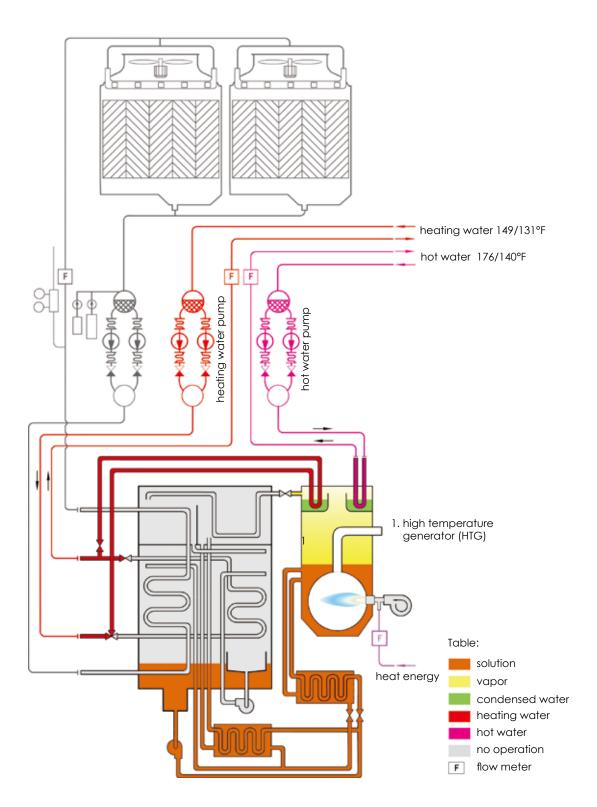
Energy sources

- Natural gas, town gas, biogas, diesel, recycled oil
- gas/oil dual fuel, gas & waste heat
- hybrid (multiple energy) waste heat from power generation industrial waste streams (steam, hot water, exhaust, etc)

Super energy-savingCompared with conventional electric


- air conditioning, the energy efficiency of BROAD non-electric air conditioning is 2 times higher, while their CO₂ emissions are 4 times lower.
- Compared with conventional water distribution systems, BROAD pakaged pumpset system reduces the rated power demand by 40-60%, and the operating electricity consumption by

CONTENTS


Non-electric Chiller		1
The Absorption Principle	1	
Direct-fired Absorption Chiller Performance Data	3	
Packaged Direct-fired Absorption Chiller Performance Data	3	
HTG(high temp generator)Enlarged Model Performance Data	4	
Performance Curves	5	
Model Selection & Ordering	6	
Supply List	7	
Steam Chiller Performance Data	9	
Packaged Steam Chiller Performance Data	9	
Packaged Hot W/Exhaust Chiller Performance Data	11	
Packaged Single-stage Steam/Hot W/Exhaust Chiller Performance Data	12	
Packaged Multi-energy Chiller Performance Data	13	
Model Selection Curves	15	
Micro Non-electric Chiller		17
Performance Data	18	
Model Selection & Ordering	19	
Performance Curves	19	
Design & Construction Tips		20
Dimensions	20	
P&I Diagram	33	
Scope of Supply/Work	39	
Machine Room Construction Tips	40	
Piping System	41	
Control System	42	
Exterior Wiring Diagram	43	
List of Control System Installation	44	
Transportation Tips	45	
Lifting & Leveling Tips	46	
Comparison		47
Energy saving comparison	47	
General Comparison	48	

The cooling principle

The input heat energy heats LiBr solution to 284°F and generate vapor, which is then condensed into water by cooling water. When the refrigerant water enters evaporator (in high vacuum condition), its temperature goes down immediately to 41°F. And it is sprayed over the copper tubes, and chilled water from 56.7°F drop down 44°F to make cooling. The water absorbs heat from air conditioning system and evaporates, then is absorbed by concentrated LiBr solution from the generators. The cooling water takes away the heat and rejects it into the air. Diluted solution is pumped into HTG and LTG separately to be heated to begin the process all over again.

Notes: Lithium Bromide is high water absorbent salt nontoxic and harmless.

The heating principle

The input heat energy heats the LiBr solution. The vapor produced by the solution heats the heating water or hot water in tubes, while condensate returns to the solution to be heated and the cycle repeats. As "separate heating" is adopted, the heating cycle becomes very simple, just like a vacuum boiler. Therefore, the life span of the chiller can be doubled.

A separate heat exchanger can provide dedicated hot water while cooling or heating operation is stopped. So, only BROAD has the unique technology in the world that can realize "three functions in one unit".

Direct-fired Absorption Chiller (P-DFA) Performance Data

Fuel: natural gas, biogas, diesel or gas/oil dual fuel

Mode	BZ	20	30	50	75	100	125	150	200	250	300	400	500	600	800	1000
Cooling capacity	kW	233	349	582	872	1163	1454	1745	2326	2908	3489	4652	5815	6978	9304	11630
	RT	66	99	165	248	331	413	496	661	827	992	1323	1653	1984	2646	3307
Heating capacity	kW	179	269	449	672	897	1121	1349	1791	2245	2687	3582	4489	5385	7176	8967
	MBH	611	718	1533	2294	3062	3827	4605	6114	7663	9172	12227	15323	18382	24496	30610
Hot water capacity	kW	80	120	200	300	400	500	600	800	1000	1200	1600	/	/	/	/
	MBH	273	410	683	1024	1365	1707	2048	2731	3414	4096	5461	/	/	/	/
Chilled water																
Flow rate	GPM	126	189	314	471	629	786	943	1257	1571	1886	2514	3413	3771	5029	6286
Pressure drop	ftH_2O	10	10	10	10	10	10	13.4	13.4	16.7	16.7	16.7	20	20	20	20
Cooling water																
Flow rate	GPM	208	323	537	805	1074	1342	1611	2147	2684	3225	4299	5373	6446	8593	10744
Pressure drop	ftH_2O	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7	20	20	20	23.4	23.4	23.4	23.4
Heating water																
Flow rate	GPM	67	102	169	255	339	424	510	678	849	1016	1355	1698	2037	2715	3392
Pressure drop	ftH_2O	6.7	6.7	6.7	6.7	6.7	6.7	6.7	10	10	13.4	13.4	16.7	16.7	20	20
Hot water																
Flow rate	GPM	15	23	38	57	26	95	114	151	189	227	303	/	/	/	/
Pressure drop	ftH_2O	6.7	6.7	6.7	6.7	6.7	6.7	6.7	10	10	13.4	13.4	/	/	/	/
Natural gas consump	otion															
Cooling	GPM	74	112	186	279	372	466	559	744	933	1117	1496	1866	2239	2988	3731
Heating	GPM	85	127	212	348	423	528	633	845	1060	1267	1689	2117	2539	3384	4228
Hot water	GPM	37	56	94	141	188	235	282	374	470	563	253	/	/	/	/
Power demand	kW	2.5	4.2	5.8	6.1	9.8	9.8	11.6	16.7	16.7	21.7	25.2	31.9	40.7	49.9	63.3
Solution wt.	klbs	2.4	2.8	5.7	7	8.6	10.8	12.3	17.6	19.8	25.8	29.7	37.4	47.6	63.2	76.4
Unit ship. wt.	klbs	11	15.4	22	26.4	30.8	37.4	41.8	57.2	68.2	/	/	/	1	/	/
Main shell ship. wt.	klbs	/	/	/	/	/	/	/	/	/	33	44	53	62	64	66
HTG. wt.	klbs	/	/	/	/	/	1	/	/	/	24	28	31	38	44	62
Operation wt.	klbs	11.7	16.3	23	28	35	42	48	64	77	92	110	139	167	196	235

Packaged Direct-fired Absorption Chiller (P-DFA)

Mode		BZY	20	30	50	75	100	125	150	200	250	300	400	500	600	800	1000
Cooling ca	pacity	RT kW	66 233	99 349	165 582	248 872	331 1163	413 1454	496 1745	661 2326	827 2908	992 3489	1323 4652	1653 5815	1984 6978	2646 9304	3307 11630
Pumpset	Chilled water pump																
	External head	ftH ₂ O	72	72	72	79	79	89	89	89	92	92	92	105	105	105	105
	Power demand	kW	4	7.5	7.5	15	15	22	30	37	44	60	60	110	110	150	180
	Cooling water pump																
	External head	ftH ₂ O	33	33	33	50	50	50	50	50	53	53	53	56	56	56	56
	Power demand	kW	3	7.5	7.5	15	15	22	22	37	44	44	60	90	110	150	180
	Hot water pump																
	External head	ftH ₂ O	23	23	23	50	50	50	50	50	50	50	50	/	/	/	/
	Power demand	kW	0.4	0.6	0.6	2.2	3.0	3.0	4.4	4.4	4.4	6.0	6.0	/	/	/	/
	Total power demand	kW	7.4	15.6	15.6	32.2	33.0	47.0	56.4	78.4	92.4	110	126	200	220	300	360
	Operation wt.	klbs	1.3	1.8	2.0	8.4	8.4	9.2	9.5	15.6	16.3	17.8	21.4	13/18.9	13.4/18.9	13.4/21.6	21.1/21.6
Cooling	Power demand	kW	5.5	11	11	/	/	/	/	/	/	/	/	/	/	/	/
tower	Operation wt.	klbs	5.5	9.9	11.2	/	/	/	/	/	/	/	/	/	/	/	/
Enclosure	Ventilation power demand	kW	0.3	0.3	0.3	1.0	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0	3.0	3.0	3.0
	Weight	klbs	1.1	1.6	1.8	7.5	7.5	8.6	8.6	11	12	14	15	24	25	32	34
Electricity	Total power demand	kW	15.7	32.7	32.7	39.3	44.3	58.3	69.5	96.6	111.1	133.7	153.2	233.9	263.7	352.9	426.3
and water consumption	Water demand for cooling	klbs/h	1.3	2.0	3.3	4.4	6.6	8.4	10	13.2	16.5	19.8	26.4	33	39.6	52.8	66

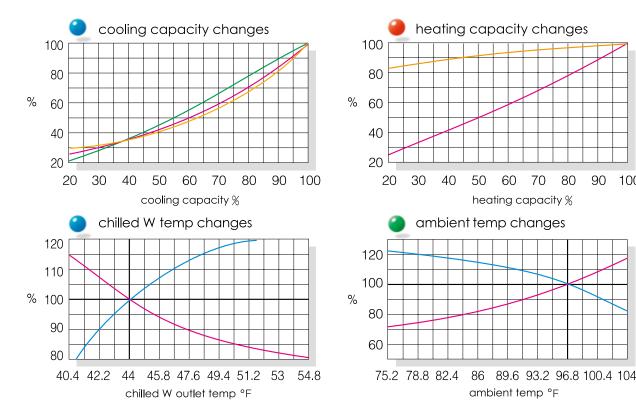
General Conditions:

- Rated chilled W outlet/inlet temp: 44°F/56.7°F
- Rated cooling W outlet/inlet temp: 97.5°F/85°F
- 3. Rated heating W outlet/inlet temp: 149°F/131°F
- 4. Rated hot W outlet/inlet temp: 176°F/140°F
- 5. Lowest permitted outlet temperature for chilled water: 41°F
- Highest permitted outlet temperature for heating/hot water: 203°F
- 7. Lowest permitted inlet temperature for cooling water: 50°F
- Adjustable chilled water flowrate: 50%~120% Adjustable heating/hot water flowrate: 65%~120%
- Pressure limit for chilled W, cooling W, heating W, hot W: 150psig (except special order)
- 10. Adjustable load: 5%~115%
- 11. Fouling factor for chilled W, heating W, hot W: 0.0001hrft².ºF/Btu, for cooling W:0.00025hrft².ºF/Btu
- 12. Natural gas consumption is calculated: 900Btu/ft³ (8051kcal/m³)
- Standard natural gas pressure is 63~197 inchH₂O(2.3~7.3psig), lower or higher pressure can be accommodated to special orders
- 14. LiBr Solution concentration: 52%. Solution weight is included in unit shipment weight
- Rated exhaust temp for cooling: 320°F
 Rated exhaust temp for heating: 293°F
- 16. Machine room ambient temperature: 5~43°C, humidity ≤ 85%
- Standard climate conditions for cooling operation: temp 96.8°F, relative humidity 50% (wet bulb 80.6°F)
- 18. Heating capacity and hot water capacity refer to the capacity in separate operation, which is adjustable within this range
- 19. Power demand of cooling, heating, hot W is under rated working condition.
- 20. Rated cooling COP: 1.36 Rated heating COP: 0.93
- 21. Life design: 25 years

Notes:

Technical specification is based upon Japanese Industry Standard JIS B 8622 "Absorption Chiller" or based upon ARI 560 standard "AbsorptionWater Chilling And Water Heating Packages"

HTG(high temp generator)Enlarged Model Performance Data


Mode	Enlarged Models	Heating capacity	Consumption
BZ		мвн	мвн
20	H1	736	791
	H2	859	923
	НЗ	982	1056
	H4	1105	1188
30	H1	1103	1186
	H2	1287	1384
	Н3	1468	1578
	H4	1652	1776
50	H1	1841	1980
	H2	2149	2311
	Н3	2454	2639
	H4	2762	2970
75	H1	2762	2970
	H2	3224	3467
	Н3	3682	3959
	H4	4144	4456
100	H1	3682	3959
	H2	4295	4618
	Н3	4911	5281
	H4	5523	5939
125	H1	4603	4949
	H2	5369	5773
	Н3	6136	6598
	H4	6906	7426

Du	1 4		
Mode	Enlarged Models	Heating capacity	Consumption
BZ		мвн	мвн
150	HI	5523	5939
	H2	6444	6929
	НЗ	7364	7918
	H4	8285	8909
200	H1	7364	7918
	H2	8593	9240
	Н3	9818	10557
	H4	11046	12265
250	H1	9205	9898
	H2	10738	11546
	НЗ	12275	13199
	H4	13808	14847
300	HI	11046	11877
	H2	12887	13857
	Н3	14728	15837
	H4	16569	17816
400	H1	14728	15837
	H2	17182	18475
	Н3	19639	21117
500	H1	18410	19796
	H2	21446	23063

Notes:

Heating capacity increases by 20% for each stage of HTG enlargement. No change with pumpset and metal enclosure specs.

Packaged DFA Performance Curves

COP

cooling capacity

fuel consumption ——

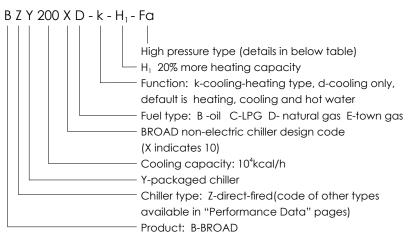
Ra	Rated COP:1.36										
IPL'	IPLV COP:1.56										
Loc	bc	COP	Factor	Result							
Α	100%	1.360	0.01	0.014							
В	75%	1.569	0.42	0.659							
С	50%	1.619	0.45	0.729							
D	25%	1.308	0.12	0.157							

Note: The integrated part load value (IPLV) reflects chiller's actual COP in operation.

Environmental **Protection Features**

Operating Noise dB(A)

Model BYZ	20~50	75~200	≥250
DFA	≤57	≤58	≤60
pumpset cooling tower	≤57	≤57	≤59
outside	≤62	≤64	≤66
encloure	≤42	≤43	≤44


Emissions:

- CO/CO₂≤0.02%
- NOx≤46ppm(O₂=5%)
- Special order: equipped electrostatic cleaner on exhaust port, and emission is almost zero

Nomenclature

water consumption

electricity consumption

Codes for high pressure type:

Pressure limit	Chilled water code	Cooling water code
150~174psig	Fa	Ма
175~232psig	Fb	Mb
233~290psig	Fc	Мс
291~348psig	Fd	Md

Note: electricity consumption means the consumption of the chiller and pumpset.

100

Model Selection & Ordering

Function selection

BROAD chillers are classified into standard type (cooling-heating-hot water), A/C type (cooling-heating) and cooling only type.

Fuel selection

- Fuels applicable to a DFA can be: natural gas, town gas, LPG, bio-gas, light oil or recycled oil.
- Natural gas and recycled oil are priority.
- Applicable to gas/oil (for special orders)
- Different fuel matches different burner.

Load selection

- Building cooling/heating load cannot be estimated, as it is more closely related to building insulation and room function than to building area.
- Model selection is mainly determined by cooling load. If the heating load is not enough, a HTG enlarged model should be selected.
- An extra boiler is recommended to meet the excessive heating requirement when heating load exceeds 1.3 times of cooling load.

Quantity

- The fewer units, the lower initial investment and operation cost (as the chiller's COP will be higher and water system's electric consumption will be lower at part load).
- 2 units are recommended for one system (the total capability equals to required load). No need to have standby unit. One unit can be considered for buildings that allow chiller stop once a year.

Flowrate selection

- BROAD pumpset adopts a large temperature difference and low flowrate design so as to save power consumption dramatically.
- BROAD designs the pump head according to its profound experience.
- If the head is proved to be insufficient, BROAD will enlarge the pump free of charge.

Pressure selection

- The standard pressure limit for chilled/heating/cooling water is 150psig. Information about high pressure type is available on page 5.
- 150~174 psig system: select high pressure type.
 175~232psig system: either extra pressure type, or secondary heat exchanger, to be comprehensively evaluated. >232 psig system: secondary heat exchange.

Split shipment

- If limited by access of customers' machine room (or limited by container transportation), split shipment can be chosen.
- In general, chiller above 300 ton will be split into two pieces as main shell and HTG. 3 pipes must be connected at jobsite.

Control

- BROAD chiller and its pumpset are equipped with complete control function, including internet monitoring.
- If users have a building management system(BMS), the BMS control interface can be selected as an optional supply. If the BMS interface is not ordered along with the chiller, it can be purchased later.

Machine room location

- On the floor or on building rooftop.
- If limited by facilities, the chiller and the pumpset can be installed in basement while cooling tower on the floor, on stilt or on building top.
- Metal enclosure does not apply to basement installation.
- The chiller and pumpset are installed in the same metal enclosure so as to minimize piping length.

Lead time

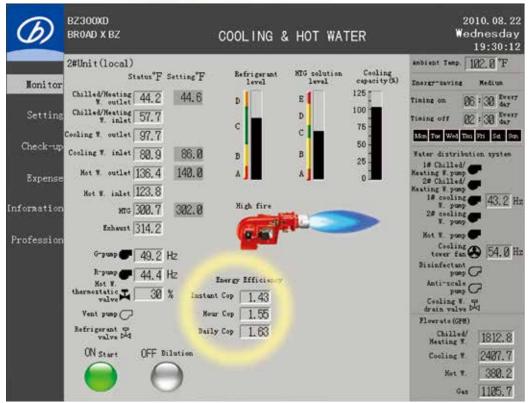
- ≤ BYZ150: 4~6 months
- BYZ200-BYZ400: 4~8 months
- ≥ BYZ500: 8~12 months

Warranty

Free warranty is to cover 12 months from commissioning or 18 months from shipment, whichever comes earlier. BROAD USA provides factory extended warranty and maintenance service upon to 25 years, please contact office for details.

Contact info

401 Hackensack Ave, Suite 503, Hackensack, NJ 07601 Tel: 201-678-3010 Fax: 201-678-3011 www.broadusa.com


Packaged DFA Supply List

Products	Category	Item	Remarks							
Chiller	Main shell	Main shell body	Includes LTG, condenser, evaporator, absorber, cold/heat insulation							
		Auto purge/vent system	Includes falling head auto purge device, auto air vent device							
		Solution pump, refrigerant pump	Welded canned type							
		Low temp heat exchanger	Plate type including heat insulation							
		Motor valve	Refrigerant motor valve, auto purge valve, etc.							
	HTG	HTG shell	Includes HTG body, front/rear flue chamber, frame base, etc.							
		High temp heat exchanger	Plate type							
		Water heater	For heating & hot water, N.A. for cooling only type							
		Thermostatic valve	1 piece each for heating water & hot water constant temp. control. N.A. for cooling only type							
		Enclosure	Encloses HTG shell, high temperature heat exchanger and water heater. (Removable)							
		Burner	Includes gas valve trains, filter, safety devices, muffler, etc.							
		Gas flow meter	For accurate measuring of the gas consumption. N.A. for non gas-fired type							
	Control system	Chiller control cabinet	Includes low voltage components, special circuit board, microprocessor or PLC, etc.							
		Touch screen	For operation ("central control" for BY20 BY30 & BY50)							
		External control elements	Includes temperature & pressure sensors, flow switches, solution level probes and actuators							
		Inverters	Solution pump inverter and refrigerant pump inverter							
		Network gateway	For Internet monitoring							
-		BMS interface(optional)	Connects to BMS system through dry contact or serial communication							
	Solution	LiBr solution	Includes corrosion inhibitor and energy intensifier.							
Pumpset system	Pumpset	Chilled/heating water pump	Two pumps (BY20, BY30, BY50 only one pump)							
		Cooling water pump	Two pumps (BY20, BY30, BY50 only one pump)							
		Hot water pump	Two pumps (BY20, BY30, BY50 only one pump) N.A. for cooling only and cooling-heating types							
		Pumpset piping	Includes zero resistance filter, zero resistance check valve, soft connectors, valves and vibration isolator							
		Enclosure piping*	Includes all piping within the system to the external connections							
		Piping accessories in enclosure	Includes flow switches, vent valves and their sockets, and soft connectors.							
		Motor drain valve	When water quality becomes poor, this valve automatically drain the cooling water. It also drains cooling water automatically in winter to avoid freeze.							
		Cooling/heating switch	N.A. for cooling only type							
		Chilled/heating water check valve	N.A. for cooling only type							
		Flow meter	Includes gas, chilled/heating W, cooling W, hot W flow meters. For accurate measuring of the load.							
		Water softener	For hard water softening (optional for BZY20 & BZY30 BZY50)							
		Auto dosing device	Automatically charge biocide corroision inhibitor and antisludge to the cooling water							
		Pumpset control cabinet	Includes cooling W pump and cooling tower fan inverters (no inverte for≥3 cooling fans), soft starter, low voltage electric parts, etc.							
		Electric wiring*	Includes wires, cables, cable conduit, cable supporters, etc.							
	1	Metal enclosure	Fiber reinforced plastics shell with insulation							
Enclosure	/	Meidienciosore	Tibel relinored plastics stiell with itsolation							

Notes: 1. "*" means only standard size is available. For any size change, please specify it in purchase orders.

2. Supply list of waste heat chillers is almost the same as DFA supply list. The main difference of waste heat chillers lies in HTG. Supply list will be provided separately when the order is placed.

Steam Chiller Performance Data

BSY: Steam from power generation or industrial waste streams

Mode	BS	20	30	50	75	100	125	150	200	250	300	400	500	600	800	1000
Cooling capacity	kW	233	349	582	872	1163	1454	1745	2326	2908	3489	4652	5815	6978	9304	11630
	RT	66	99	165	248	331	413	496	661	827	992	1323	1653	1984	2646	3307
Chilled W																
Flowrate	GPM	126	189	314	471	629	786	943	1257	1571	1886	2514	3413	3771	5029	6286
Pressure drop	ftH ₂ O	10	10	10	10	10	10	13.4	13.4	16.7	16.7	16.7	20	20	20	20
Cooling W																
Flowrate	GPM	215	318	537	805	1074	1342	1610	2147	2684	3225	4299	5372	6446	8593	10745
Pressure drop	ftH ₂ O	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7	20	20	20	23.4	23.4	23.4	23.4
Steam consumption	lb/h	547	820	1365	2053	2734	3424	4115	5482	6862	8234	10988	13731	16479	21978	27464
Power demand	kW	1.7	3.2	4.3	4.6	6.8	6.8	6.8	10.2	10.2	11.7	13.2	17.7	20.7	25.9	34.9
Solution weight	klbs	1.5	2.4	4.2	5.7	6.6	9	10.1	14.8	16.5	21.8	24.7	32.2	38.6	50	62.2
Unit ship. wt	klbs	8.8	13	16.5	19.8	25.4	30.9	35.3	46.3	57.3	1	/	/	1	/	/
Main shell ship. wt	klbs	/	/	/	/	/	/	/	/	/	33.1	44.1	52.9	61.7	63.9	66.2
HTG. wt	klbs	/	/	/	/	/	/	/	/	/	11	13.2	17.6	19.8	24.3	28.7
Operation weight	klbs	9.9	14.6	18.7	22	28.7	35.3	39.7	52.9	66.2	77.2	94.8	119.1	138.9	165.4	187

Packaged Steam Chiller Performance Data

Mode		BSY	20	30	50	75	100	125	150	200	250	300	400	500	600	800	1000
Cooling ca	pacity	kW	233	349	582	872	1163	1454	1745	2326	2908	3489	4652	5815	6978	9304	11630
		RT	66	99	165	248	331	413	496	661	827	992	1323	1653	1984	2646	3307
Pumpset	Chilled/heating W. pu	mp															
	External head	ftH ₂ O	72	72	72	79	79	89	89	89	92	92	92	105	105	105	105
	Power demand	kW	4	7.5	7.5	15	15	22	30	37	44	60	60	110	110	150	180
	Cooling W . pump																
	External head	ftH ₂ O	33	33	33	49	49	49	49	49	52.49	52.49	52.49	56	56	56	56
	Power demand	kW	3	7.5	7.5	15	15	22	22	37	44	44	60	90	110	150	180
	Total power demand	kW	7	15	15	30	30	44	52	74	88	104	120	200	220	300	360
	Operation weight	klbs	1.1	1.5	1.76	7.3	7.3	7.94	8.2	13.9	14.6	15.9	19.4	13/19	13.5/19.4	13.5/21.6	21.2/21.6
Cooling	Power demand	kW	5.5	11	11	/	/	/	/	/	/	/	/	/	/	/	/
tower	Operation weight	klbs	5.5	9.9	11.2	/	/	/	/	/	/	/	/	/	/	/	/
Enclosure	Ventilation power demand	kW	0.3	0.3	0.3	1.0	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0	3.0	3.0	3.0
	Weight	klbs	1.1	1.5	1.76	7.5	7.5	8.6	8.6	11.47	12.3	13.89	15	24	25	32	34
Electricity	Total power demand	kW	14.5	30.6	30.6	35.6	38.3	52.3	60.3	85.7	100.2	117.7	135.2	219.7	243.7	328.9	397.9
and water consumption	Water demand for cooling	klbs/h	1.3	2	3.3	4.4	6.6	8.4	9.9	13	16.5	19.8	26.46	33	39.7	52.9	66

General Conditions:

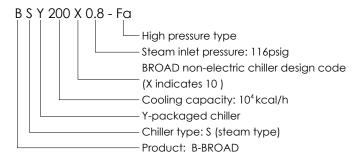
- 1. Rated saturated steam pressure: 116psig, rated condensate temp: 203°F
- 2. Rated chilled W outlet/inlet temp: 44°F/56.7°F
- 3. Rated cooling W outlet/inlet temp: 97.5°F/85°F
- 4. Lowest permitted outlet temperature for chilled water: 41°F
- Lowest permitted inlet temperature for cooling water: 50°F
- 6. Steam pressure upper limit 110%
- 7. Adjustable chilled water flowrate: 50%~120%
- Pressure limit for chilled W, cooling W: 150psig (except special order)

- 9. Adjustable load: 5%~115%
- 10. Fouling factor for chilled W, heating W, hot W: 0.0001 hrft² °F/Btu, for cooling W:0.00025hrft² °F/Btu
- 11. LiBr Solution concentration: 52%. Solution weight is included in unit ship, wt.
- 12. Machine room ambient temperature: 41°F~109.4°F,humidity ≤ 85%
- 13. Standard climate conditions for cooling operation: 96.8°F, relative humidity 50% (wet bulb 80.6°F)
- 14. Rated cooling COP: 1.41
- 15. Life design: 25 years

Performance Curves

The same as packaged direct-fired chiller. Please refer to P5 for details.

COP


Rated COP:1.41										
IPLV COP:1.62										
Loa	ıd	COP	Factor	Result						
Α	100%	1.410	0.01	0.014						
В	75%	1.627	0.42	0.683						
С	50%	1.679	0.45	0.756						
D	25%	1.356	0.12	0.163						

Note: The integrated part load value (IPLV) reflects chiller's actual COP in operation. Condition & formula base on ARI560

Operating Noise dB(A)

Model BYS	20~50	75~200	≥250
Steam chiller	≤52	≤53	≤53
Pumpset	≤57	≤57	≤59
Cooling tower	≤62	/	/
outside enclosure	≤40	≤41	≤42

Nomenclature

Note: High pressure type (see P5)

Model Selection & Ordering

Steam selection

Please specify saturated steam pressure and temperature. The temperature of overheated steam should be ≤ 356 °F (except special order)

Other factors

Load, quantity, flow, pressure, split shipment, control, machine room, location, ordering and warranty are the same as those of packaged direct-fired chillers. Please refer to P6 for details

Supply list

Refer to packaged DFA supply list on P7

Packaged Hot W/Exhaust chiller Performance Data

BHY/BEY: hot water/exhaust from power generation or industrial waste streams (pumpset, enclosure data are the same as steam chiller)

Code Mode				Heatin	-	Chilled	W	Cooling	W	heating	g W	Hot	Exhaust c	consump.		Solu-	Unit			Chiller
		capaci	ty	capad	city	Flow- rate	Pres- sure drop	Flow- rate	Pressure drop	Flow- rate	Pres- sure drop	water con- sump.	Cooling	Heating	de- mand	tion wt.	ship. wt.	shell ship wt.	wt.	operation weight
		kW	RT	kW	MBH	GPM	ftH_2O	GPM	ftH_2O	GPM	ftH_2O	GPM	lb/h	lb/h	kW	Klbs	Klbs	Klbs	Klbs	Klbs
Two-	20	233	66	/	/	126	10	215	16.73	/	/	44.5	/	/	1.7	2.2	9.9	/	/	11
stage hot	30	349	99	/	/	189	10	318	16.73	/	/	66.9	/	/	3.2	2.6	13.7	/	/	15.2
water	50	582	165	/	/	314	10	537	16.73	/	/	110.96	/	/	4.3	4.9	17.6	/	/	19.8
chiller BH	75	872	110	/	/	471	10	806	16.73	/	/	166.4	/	/	4.6	6.2	20.9	/	/	24.3
hot	100	1163	331	/	/	630	10	1074	16.73	/	/	222.4	/	/	6.8	7.5	26.46	/	/	28.7
water 356°F	125	1454	413	/	/	788	10	1343	16.73	/	/	278.4	/	/	6.8	9.7	30.9	/	/	33.1
	150	1745	496	/	/	942	13.4	1612	16.73	/	/	334.6	/	/	6.8	10.8	35.3	/	/	39.7
	200	2326	611	/	/	1259	13.4	2149	16.73	/	/	444.7	/	/	10.2	15.7	46.3	/	/	52.9
	250	2908	827	/	/	1572	16.7	2686	20.07	/	/	559.2	/	/	10.2	17.2	57.3	/	/	66.2
	300	3489	992	/	/	1889	16.7	3227	20.07	/	/	669	/	/	11.72	23.4	/	33.1	13.2	77.2
	400	4652	1323	/	/	2514	16.7	4302	20.07	/	/	894	/	/	13.2	26.7	/	44.1	15.4	99.2
	500	5815	1653	/	/	3144	20	5376	23.4	/	/	1114	/	/	17.7	32.6	/	52.9	19.8	121.3
	600	6978	1984	/	/	3773	20	6450	23.4	/	/	1139	/	/	20.7	39.9	/	61.7	24.3	145.5
	800	9304	2646	/	/	5033	20	8599	23.4	/	/	1788	/	/	25.9	53.4	/	63.9	30.9	174.2
	1000	11630	3307	/	/	6292	20	10752	23.4	/	/	2232	/	/	34.9	62.3	/	66.2	37.5	202.9
Two-	20	233	66	153	522	126	10	215	16.73	57.7	6.7	/	3367	3367	1.7	3.3	14.3	/	/	15.4
stage exhaust	30	349	99	230	1191	189	10	318	16.73	86.3	6.7	/	5072	5072	3.2	4.9	19.6	/	/	21.2
chiller	50	582	165	384	1310	314	10	537	16.73	144	6.7	/	8410	8410	4.3	7.7	26.5	/	/	27.6
BE exhaust	75	872	110	575	1962	471	10	806	16.73	216	6.7	/	12639	12639	4.6	9.7	30.9	/	/	35.3
932°F	100	1163	331	767	2617	630	10	1074	16.73	288	6.7	/	16845	16845	6.8	12.6	39.7	/	/	44.1
	125	1454	413	959	3272	788	10	1343	16.73	360	6.7	/	21094	21094	6.8	14.6	48.5	/	/	52.9
	150	1745	496	1151	3927	942	13.4	1612	16.73	431	6.7	/	26348	26348	6.8	16.8	55.1	/	/	59.5
	200	2326	611	1534	5234	1259	13.4	2149	16.73	577	10	/	33760	33760	10.2	23.8	72.8	/	/	79.4
	250	2908	827	1918	6544	1572	16.7	2686	20.07	718	10	/	42260	42260	10.2	26.7	/	28.7	26.5	92.6
	300	3489	992	2301	7851	1889	16.7	3227	20.07	863	13.4	/	50714	50714	11.72	34.8	/	33.1	33.1	110
	400	4652	1323	3068	10468	2514	16.7	4302	20.07	1154	13.4	/	67699	67699	13.2	40.1	/	44.1	39.7	136.7
	500	5815	1653	3835	13085	3144	20	5376	23.4	1440	16.7	/	84562	84562	17.7	50.7	/	52.9	46.3	165.4
	600	6978	1984	4602	15702	3773	20	6450	23.4	1735	16.7	/	101486	101486	20.7	64.2	/	61.7	55.1	200.7
	800	9304	2646	6137	20940	5033	20	8599	23.4	2303	20	/	135350	135350	25.9	80.5	/	63.9	70.6	242.5
	1000	11630	3307	7671	26174	6292	20	10752	23.4	2880	20	/	169136	169136	34.9	90.4	/	66.2	88.2	275.6

General Conditions:

- Rated hot W inlet/outlet temp for hot W chiller:356°F/329°F
- Rated exhaust inlet/outlet temp for exhaust chiller: 932°F/320°F
- 3. Rated chilled W outlet/inlet temp: 44°F/56.7°F
- 4. Rated cooling W outlet/inlet temp: 97.5°F/85°F
- Rated heating W outlet/inlet temp for two-stage exhaust chiller: 149°F/131°F
- 6. Lowest permitted outlet temperature for chilled water: 41°F
- Lowest permitted inlet temperature for cooling water: 50°F
- 8. Adjustable chilled water flowrate: 50%~120%
- Pressure limit for chilled/cooling water: 150psig (except special order)
- 10. Adjustable load: 5%~115%

- 11. Fouling factor for chilled W, heating W, hot W: 0.0001 hrft² .°F/Btu, for cooling W:0.00025hrft² .°F/Btu
- 12. LiBr Solution concentration: 52%, solution weight is included in unit shipment wt.
- 13. Machine room ambient temperature: 41°F~109.4°F, humidity ≤ 85%
- 14. Rated cooling COP: 1.41
- 15. Rated heating COP for exhaust chiller: 0.93
- 16. Life design: 25 years
- 17. Please refer to P5, P6 & P7 for performance curve, model selection & ordering and supply list information.

Packaged Single-stage Steam/Hot W. /Exhaust Chiller Performance Data BDSY/BDHY/BDEY: steam/hot water/exhaust

(pumpset, enclosure data are the same as steam chiller)

Code	Model	Cooling		Chilled W	l	Cooling	W	Steam con-	Hot water	Exhaust consump.	Power de- mand	Solution wt.	Unit	Main shell	Chiller operation
		capacity		Flowrate	Pres- sure drop	Flow- rate	Pres- sure drop	sump.	con- sump.	consump.	mana	Wi.	wt.	ship. wt.	weight
		kW	RT	GPM	ftH ₂ O	GPM	ftH ₂ O	lb/h	GPM	lb/h	kW	Klbs	Klbs	Klbs	Klbs
Single-	20	233	66	126	10	285	16.7	1005	/	/	2.5	1.5	7.7	/	8.8
stage	30	349	99	189	10	428	16.7	1516	/	/	2.5	1.8	9.9	/	11.2
steam chiller	50	582	165	314	10	713	16.7	2525	/	/	2.5	3.7	14	/	15
BDS	75	872	248	471	10	1069	20	3776	/	/	5.3	4.8	19	/	21
steam	100	1163	331	629	10	1425	20	5040	/	/	5.7	5.3	23	/	25
14.5psig	125	1454	413	786	10	1782	20	6307	/	/	5.7	7.0	27	/	31
	150	1745	496	943	13.4	2138	20	7574	/	/	5.7	7.7	31	/	35
	200	2326	661	1257	13.4	2847	20	10092	/	/	8.6	12.1	44	/	48
	250	2908	827	1571	16.7	3560	23	12619	/	/	10.1	13.2	52	/	57
	300	3489	992	1886	16.7	4272	23	15148	/	/	10.1	18.1	62	/	68
	400	4652	1323	2514	16.7	5698	23	20195	/	/	13.9	19.6	70	/	81
	500	5815	1653	3143	20	7119	30	25257	/	/	13.8	25.8	/	59	97
	600	6978	1984	3771	20	8545	30	30307	/	/	17.5	31.9	/	64	108
Single-	20	209	60	113	8.4	262	16.7	/	108	/	2.5	1.5	7.7	/	8.8
stage	30	302	86	169	8.4	385	16.7	/	159	/	2.5	1.8	9.9	/	11.2
hot water	50	512	146	277	8.4	642	16.7	/	264	/	2.5	3.7	14	/	15
chiller	75	767	218	415	8.4	959	20	/	396	/	5.3	4.8	19	/	21
BDH	100	1023	292	553	8.4	1280	20	/	528	/	5.7	5.3	23	/	25
hot	125	1279	365	691	8.4	1602	20	/	660	/	5.7	7.0	27	/	31
water 208°F	150	1535	439	830	10	1923	20	/	793	/	5.7	7.7	31	/	35
200 1	200	2046	585	1106	10	2561	23	/	1057	/	8.6	12.1	44	/	48
	250	2558	730	1383	13.4	3203	23	/	1321	/	10.1	13.2	52	/	57
	300	3069	877	1659	13.4	3841	23	/	1590	/	10.1	18.1	62	/	68
	400	4092	1169	2231	13.4	5122	23	/	2118	/	13.9	19.6	70	/	81
	500	5115	1461	2766	16.7	6402	30	/	2646	/	13.8	25.8	/	59	97
	600	6138	1754	3319	16.7	7682	30	/	3179	/	17.5	31.9	/	64	108
Single-	20	233	66	126	10	285	16.7	/	/	12383	2.5	1.8	8.8	/	9.7
stage	30	349	99	189	10	428	16.7	/	/	18668	2.5	2.6	11	/	12.1
exhaust chiller	50	582	165	314	10	713	16.7	/	/	31124	2.5	4.6	15	/	17
BDE exhaust	75	872	248	471	10	1069	20	/	/	46567	5.3	5.5	20	/	20
572°F	100	1163	331	629	10	1425	20	/	/	62164	5.7	6.2	24	/	24

General Conditions:

- Rated saturated steam pressure for BDS chiller 14.5psig. Rated condensate temperature for BDS chiller: 203°F
- Rated hot W inlet/outlet temp for single-stage hot W chiller: 208°F/190°F
- Rated exhaust inlet/outlet temp for single-stage exhaust chiller: 572°F/266°F
- 4. Rated chilled W outlet/inlet temp: 44°F/56.7°F
- 5. Rated cooling W outlet/inlet temp: 97.5°F/85°F
- 6. Lowest permitted outlet temperature for chilled water: 41°F
- Lowest permitted inlet temperature for cooling water: 50°F
- 8. Adjustable chilled water flowrate: 50%~120%
- Pressure limit for chilled/cooling water: 150psig (except special order)
- 10. Adjustable load: 5%~115%

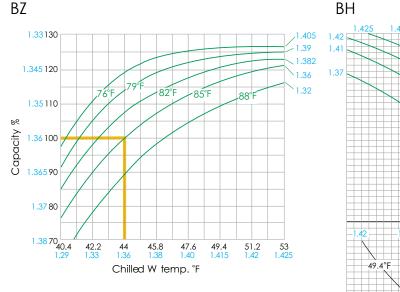
- 11. Fouling factor for chilled W, heating W, hot W: 0.0001hrft².ºF/Btu, for cooling W:0.00025hrft².ºF/Btu
- 12. LiBr Solution concentration: 50%. Solution weight is included in unit shipment wt.
- 13. Machine room ambient temperature: 41°F~109.4°F, humidity ≤ 85%
- 14. Rafed COP: single-stage steam chiller and exhaust chiller: 0.79, single-stage hot W chiller: 0.76
- 15. Life design: 25 years
- 16. Please refer to P5, P6 & P7 for performance curve, model selection & ordering and supply list information.

Packaged Multi-energy Chiller Performance Data

BZEY/BHEY/BZHEY: gas (oil) and waste heat hybrid (multi-energy chiller) (pumpset, enclosure data are the same as DFA)

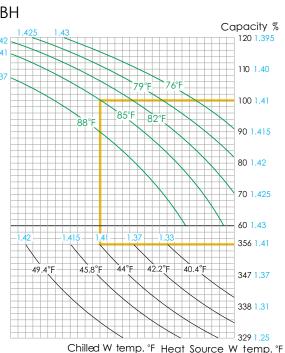
(100)	,,,			0.0					. , ,								1
Code	Mode	Cooling		Heatin	•	Hot		Hhilled	W	Heatin	g water	Hot wo	ater	Cooling	W	Power	Solution
		capacit	У	capac	шу	water capac	ity	Flow- rate	Pressure drop	Flow- rate	Pressure drop	Flow- rate	Pressure drop	Flow- rate	Pressure drop	demand	WI.
		kW	RT	kW	MBH	kW	мвн	GPM	ftH ₂ O	GPM	ftH ₂ O	GPM	ftH ₂ O	GPM	ftH ₂ O	kW	klbs
Exhaust	20	233	66	179	612	80	273	126	10	67	6.7	15	6.7	208	16.7	2.5	2.9
&	30	349	99	269	917	120	409	189	10	102	6.7	23	6.7	323	16.7	4.2	3.5
direct- fired	50	582	165	449	1530	200	683	314	10	169	6.7	38	6.7	520	16.7	5.8	6.2
chiller	75	872	248	672	2295	300	1024	471	10	255	6.7	57	6.7	779	16.7	6.1	7.7
BZE	100	1163	331	897	3061	400	1365	629	10	339	6.7	76	6.7	1039	16.7	9.8	9.7
exhaust 932°F	125	1454	413	1121	3824	500	1707	786	10	424	6.7	95	6.7	1299	16.7	9.8	11.9
gas/oil	150	1745	496	1349	4589	600	2048	943	13.4	510	6.7	114	6.7	1559	16.7	11.6	13.4
	200	2326	661	1791	6119	800	2730	1257	13.4	674	10	151	10	2078	16.7	16.7	18.7
	250	2908	827	2245	7649	1000	3412	1571	16.7	849	10	189	10	2598	20	16.7	22
	300	3489	992	2687	9179	1200	4096	1886	16.7	1016	13.4	227	13.4	3118	20	21.7	28
	400	4652	1323	3582	12238	1600	5460	2514	16.7	1355	13.4	303	13.4	4157	20	25.2	32.8
	500	5815	1653	4489	15298	/	/	3143	20	1695	16.7	/	/	5196	23.4	31.9	41.8
	600	6978	1984	5385	18357	/	/	3771	20	2037	16.7	/	/	6235	23.4	40.7	50.9
	800	9304	2646	7176	24476	/	/	5029	20	2715	20	/	/	8314	23.4	49.9	66.5
	1000	11630	3307	8967	30595	/	/	6286	20	3392	20	/	/	10392	23.4	63.3	79.7
Hot W &	20	233	66	153	522	/	/	126	10	58	5	/	/	231	16.7	1.7	3.5
exhaust	30	349	99	230	785	/	/	189	10	86	6.7	/	/	323	16.7	3.2	5
chiller BHE	50	582	165	384	1310	/	/	314	10	144	5	/	/	576	16.7	4.3	7.9
exhaust	75	872	248	575	1962	/	/	471	10	215	5	/	/	862	16.7	4.6	10
932°F	100	1163	331	767	2617	/	/	629	10	288	5	/	/	1153	16.7	6.8	12.8
hot W	125	1454	413	959	3272	/	/	786	10	360	5	/	/	1439	16.7	6.8	15
208°F	150	1745	496	1151	3927	/	/	943	13.4	431	5	/	/	1729	16.7	6.8	17.2
	200	2326	661	1534	5324	/	/	1257	13.4	576	8.4	/	/	2310	16.7	10.2	24.2
	250	2908	827	1918	6544	/	/	1571	16.7	717	8.4	/	/	2882	20	10.2	27.8
	300	3489	992	2301	7851	/	/	1886	16.7	862	11.7	/	/	3463	20	11.7	35.7
	400	4652	1323	3068	10468	,	/		16.7	1153		,	/	4615	20	13.2	41.2
	500	5815	1653	3835	13085	-	,	3143	20		15	,	/	5768	23.4	17.7	52.2
	600	6978	1984	4602	15702		<u>, </u>	3771	20	1734	15	/	<u>, </u>	6921	23.4	20.7	65.6
	800	9304	2646	6137	20940	-	/	5029	20	2301	18.4	/	/	9227	23.4	25.9	81.9
	1000	11630		7671	26174	-	/	6286		2878		/	/	11537		34.9	92.5
Hot W &		233	66	179	612	80	273	126	10	67	6.7	15	6.7	231	16.7	2.5	3.1
exhaust		349	99	269	917	120	409	189	10	102	6.7	23	6.7	323	16.7	4.2	3.7
&	50	582	165	449	1530	200	683	314	10	169	6.7	38	6.7	576	16.7	5.8	6.4
direct- fired	75	872	248	672	2295	300	1024		10	255	6.7	57	6.7	862	16.7	6.1	7.9
chiller	100	1163	331	897	3060	400	1365		10	339	6.7	76	6.7	1153	16.7	9.8	10
BZHE	125	1454	413	1121	3824	500	1707		10	424	6.7	95	6.7	1439	16.7	9.8	12.3
exhaust 932°F	150	1745	496	1349		600	2048		13.4	510	6.7	114	6.7	1729	16.7	11.6	13.9
hot W	200	2326	661	1791		800		1257		674	10	151	10	2310	16.7	16.7	19.2
208°F	250	2908	827	2245		1000		1571		849	10	189	10	2882	20	16.7	23.1
	300	3489	992	2687			4096			1016		227	13.4	3463	20	21.7	28.8
	400	4652	1323		12238					1355		303	13.4	4615	20	25.2	33.9
	500	5815	1653		15298			3143		1695		/	/	5768	23.4	31.9	43.4
	600	6978	1984		18357			3771		2037		/	/	6921	23.4	40.7	52.4
	800	9304			24476			5029		2715		/	/	9227	23.4	49.9	68
1	1000				30595			6286		3392		,	/	11537		63.3	82

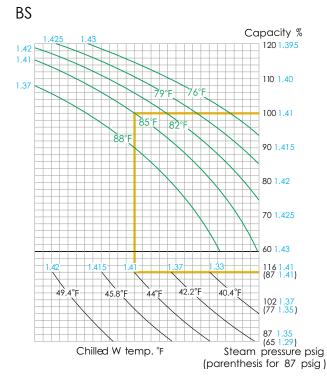
	consump		ı		ı		Unit			Operation
Cooling	1		Heating		Hot w	ater	snip. wt.	shell ship	wt.	wt.
NG	Exhaust	Hot W	NG	Exhaust	NG	Exhaust		wt.		
MBH	lb/h	GPM	MBH	lb/h	MBH	lb/h	klbs	klbs	klbs	klbs
583	1009	/	622	1009	293	1009	13	/	/	14
876	1520	/	993	1520	441	1520	18	/	/	19
1459	2520	/	1663	2520	740	2520	24	/	/	25
2188	3789	/	2481	3789	1104	3789	31	/	/	33
2918	5049	/	3390	5049	1475	5049	40	/	/	42
3647	6323	/	4129	6323	1841	6323	46	/	/	49
4376	7596	/	4961	7596	2205	7596	50	/	/	55
5835	10118	/	6629	10118	2935	10118	68	/	/	75
7294	12665	/	8292	12665	3681	12665	/	29	31	90
8753	15201	/	9924	15201	4411	15201	/	33	33	103
11670		/	13232		5869	20281	/	44	35	125
14589	25346	/		25346	/	/	/	53	46	158
17507	30417	/	19846	30417	/	/	/	62	57	189
23342	40566	/	26436	40566	/	/	/	64	53	209
29178	50693	/	33066	50693	/	/	/	66	75	251
/	3364	29	/	3364	/	/	14	/	/	15
/	5067	44	/	5067	/	/	20	/	/	21
/	8402	72	/	8402	/	/	26	/	/	28
/	12628	108	,	12628	,	/	33	/	/	35
/	16829	145	/	16829	/	/	42	/	/	45
/	21074	180	/	21074	/	1	49	/	/	55
/	25321	212	/	25321	/	/	56	/	/	62
/	33728	290	/	33728	/	/	75	/	/	81
/	42220	364	/	42220	/	/	/	29	31	95
/	50667	435	/	50667	/	/	/	33	46	125
/	67606	580	/	67606	/	/	/	44	48	147
/	84483	722	/	84483	/	/	/	53	64	187
/	101391		/	101391	/	1	/	62	82	240
,	135222		,	135222		/	,	64	93	264
,	168977		/	168977	/	/	,	66	104	293
583	1007//	29		1007//	293		14	/	/	15
876	1520	44	993	1520		1520	19	/	/	20
1459	2520	72	1663	2520	740	2520	25	/	/	27
2188	3789	108	2481	3789		3789	33	/	/	35
2918		145	3390	5049		5049	42	/	/	44
3647	6323	180	4129	6323		6323	48	/	/	53
4376	7596	212	4961	7596		7596	54	/	/	58
5835	10118	290	6629	10118		10118		/	/	79
7294	12665	364	8292	12665		12665	/3	, 29	33	95
8753							/		35	
	15201 20281	435	9924			15201		33		108
		580		20281		20281	/	44 52	42 55	132
	25346	722		25346	/	/	/	53	55	167
	30417	867		30417	/	/	/	62	66	200
	40566	1157		40566	/	/	/	64	82	240
29178	50693	1448	33066	50693	/	/	/	66	110	289

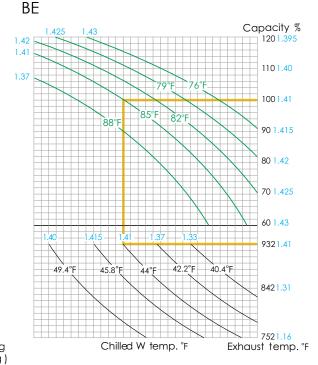

General Conditions:

- Rated chilled W outlet/inlet temp: 44°F/56.7°F
- 2. Rated cooling W outlet/inlet temp: 97.5°F/85°F
- 3. Rated heating W outlet/inlet temp: 149°F/131°F
- 4. Rated hot W outlet/inlet temp: 176°F/140°F
- Lowest permitted outlet temperature for chilled water: 41°F
- Highest permitted outlet temperature for heating/ hot water: 203°F
- Lowest permitted inlet temperature for cooling water: 50°F
- 8. Adjustable chilled water flowrate: 50%~120%
- Adjustable heating/hot water flowrate: 65%~120%
- Pressure limit for chilled W, cooling W, heating W, hot W 0.8MPa (except special order)
- 11. Adjustable load: 5%~115%
- 12. ouling factor for chilled W, heating W, hot W: 0.0001hrft².ºF/Btu, for cooling W:0.00025hrft².ºF/Btu
- 13. LiBr Solution concentration: 52%. Solution weight is included in unit ship. wt.
- Natural gas consumption is calculated: 10kWh/m³(8600kcal/m³).
- 15. Standard natural gas pressure is 2.3~7.3psig(63~197 inchH₂O), lower or higher pressure can be ccommodated to special orders
- 16. Machine room ambient temperature:41°F~109°F, humidity ≤ 85%
- Standard climate conditions for cooling operation: 96.8°F, relative humidity 50%(wet bulb 80.6°F)
- 18. Exhaust provides 30% of the total capacity per standard design of BZE/BZHE. Over 30% can be accommondated into special orders.
- 19. Energy consumption is for seperate operation of heat source and fuel
- 20. Life design: 25 years
- 21. Please refer to P5, P6 & P7 for performance curve, model selection & ordering and supply list information

Model Selection Curves

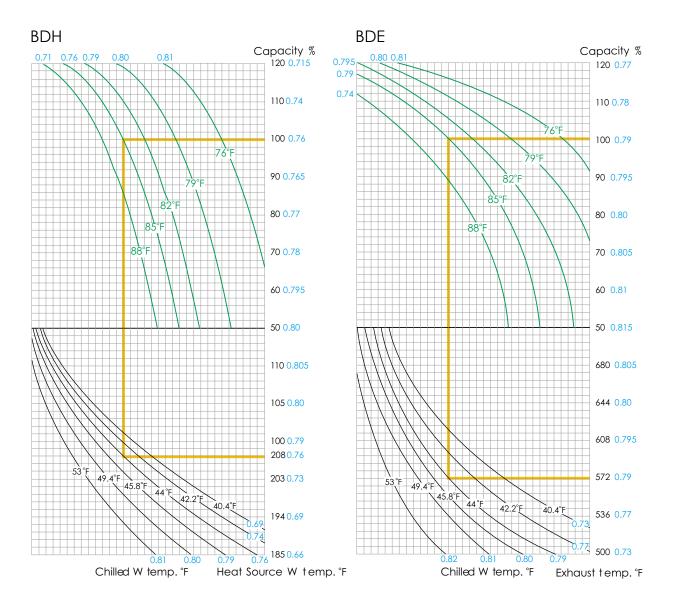

(orange means the rated value)

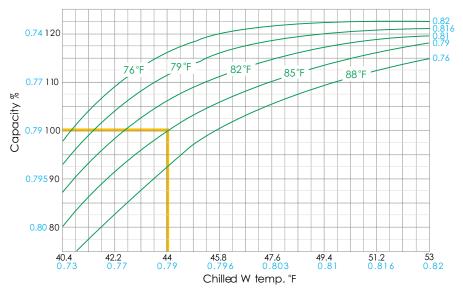

chilled/cooling water temp, cooling capacity, COP



Notes: The figure in blue is COP. In calculation, 3 COP values are added and then divided by 3. e.g. $\,$

- 1. Cooling capacity is 100%, cooling water temp. is 82 °F, then chilled water temp. is 42.6 °F,COP is 1.358,i.e.(1.36+1.382+1.332)/3=1.358
- 2. Chilled water temp. is 49.4 $^{\circ}\text{F}$, cooling water temp. is 85 $^{\circ}\text{F}$, then cooling capacity is 116%, COP=1.374
- 3. Cooling capacity is 90%, chilled water is 42.2°F, then cooling water temp. is 85°F, COP=1.352





Notes: The figure in blue is COP. In calculation, 4 COP values are added and then divided by 4. e.g.

- 1. Cooling capacity is 100%, steam pressure 87 psig, cooling water temp. is 82°F, then chilled water temp. is 46.1 °F,COP is 1.399,i.e.(1.41+1.42+1.35+1.416)/4=1.399
- 2. Steam pressure 102 psig, chilled water temp. is $45.8\,^{\circ}$ F, cooling water temp. is $82\,^{\circ}$ F, then cooling capacity is 106%, COP=1.402
- Cooling capacity is 90%, steam pressure 116 psig, chilled water is 42.2°F, then cooling water temp. is 85.7°F, COP=1.396 (steam pressure 116psig)

BDS

Note: The figure in blue is COP (BH, BE, BDH, BDE, BDS). Calculation is the same with BZ & BS models.

Micro Non-electric Chiller (villa air conditioning)

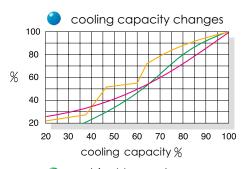
Performance Data

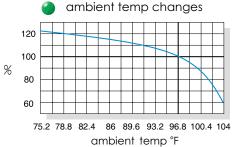
Model	BCT23	BCT70	BCT115
cooling capacity k	V 23	70	115
	6.6	20	33
heating capacity k	V 23	70	115
ME	H 78	239	392
hot W capacity K	V 7.7	39	39
ME	H 26	133	133
A/C water			
chilled water O/I temp	°F 44/56.7	44/56.7	44/56.7
heating water O/I temp	PF 135/122	135/122	135/122
flowrate GP	и 12.8	38	63
external head ps	g 11.4	15.7	17.1
hot W			
primary heating water O/I temp	PF 176/140	176/140	176/140
flowrate GP	M 1.5	7.4	7.4
NG consumption			
cooling	H 71	217	357
heating ME	H 88	271	445
hot W ME	H 29.5	151	151
electricity and water consumption			
electricity for cooling K	V 1.8	5.2	7.2
electricity for heating k	V 0.7	1.7	2.3
water for cooling lb,	h 132	396	660
operating noise dB(/	() 63	65	65
ship. weight	b 1211	3634	5462
A/C W hold-up volume	b 22	70	105

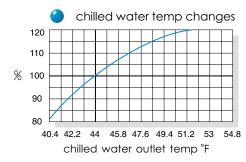
Others:

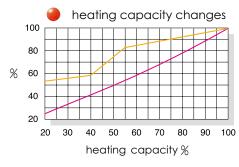
- 1. Fuel: NG, Town gas, LPG, Light oil, please specify it in purchase orders.
- 2. Natural gas consumption is calculated 900 Btu/ft³ (8,051kcal/m³).
- 3. Standard gas pressure: 7.9~25.2 inchH₂O(0.28~0.88psig). Pressure release valve has to be installed if the pressure is higher than the standard.
- 4. Standard condition for cooling: 96.8°F , humidity 50%. 5. Permitted condition: summer ≤ 113°F winter ≥ -22°F.
- 6. Lowest permitted outlet temp. for chilled W: 41°F. Pressure limit for chilled/ heating/ hot W: 134ftH₂O(56psig).
- 7. Hot W can only be used after secondary heat exchange, otherwise it gets scaled.
- 8. Single phase power for BCT23 and 3 phase for BCT70/115.
- 9. Rated cooling COP: 110% Rated heating COP: 88%.

Model Selection & Ordering

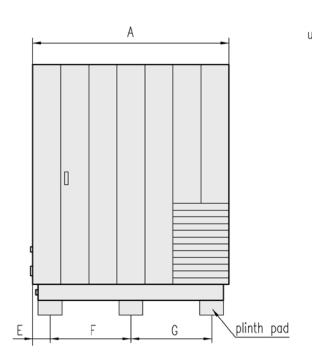

- BROAD recommendations are as follows:

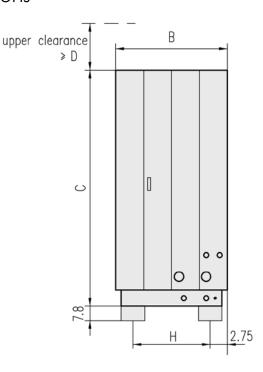

 unit for buildings ≤ 3240 ft²
 2 units for buildings ≤ 21600 ft²
 3 units for buildings > 21600 ft²


 For year-round non-stop operation, at least 2 units are recommended, but standby units are not recommended. Several units can be incorporated into an integrated system.
- Lead time: 2~4 months for small quantity orders.
 Orders greater than 300 units, take at least 4 months

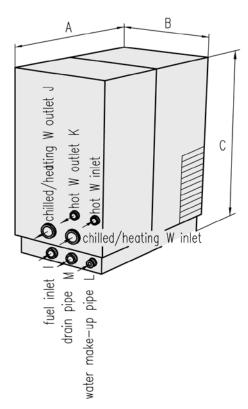


Performance Curves

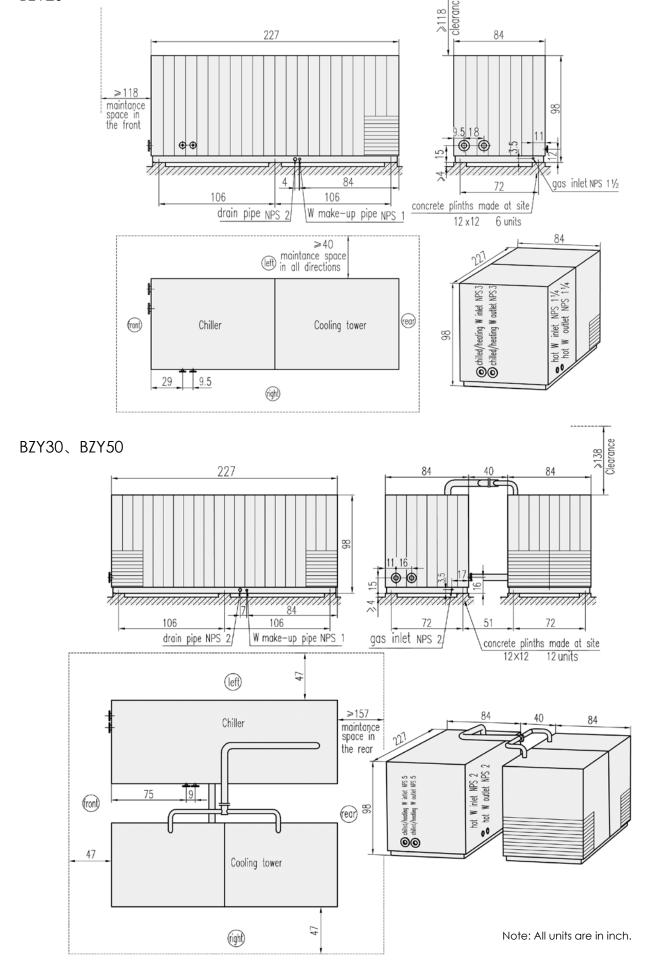


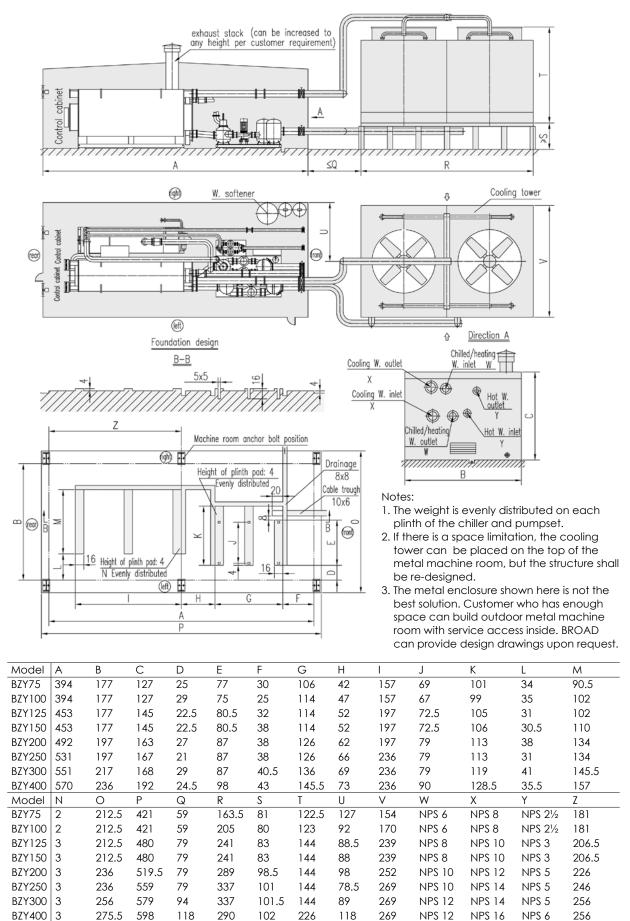




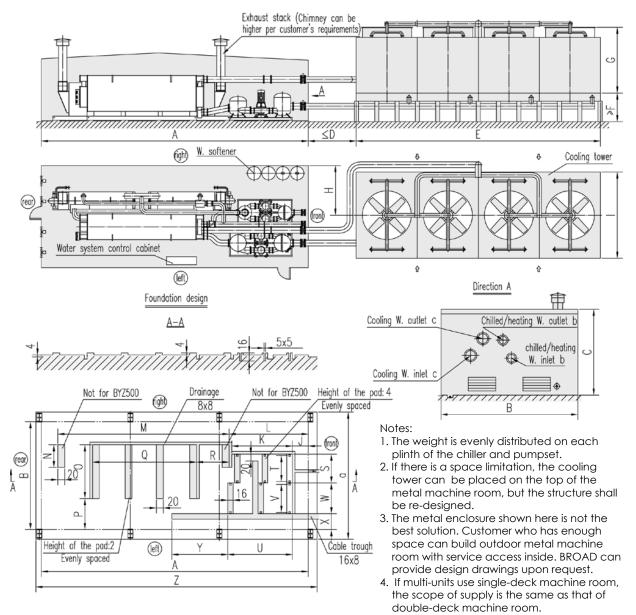


Micro Non-electric Chiller Dimensions



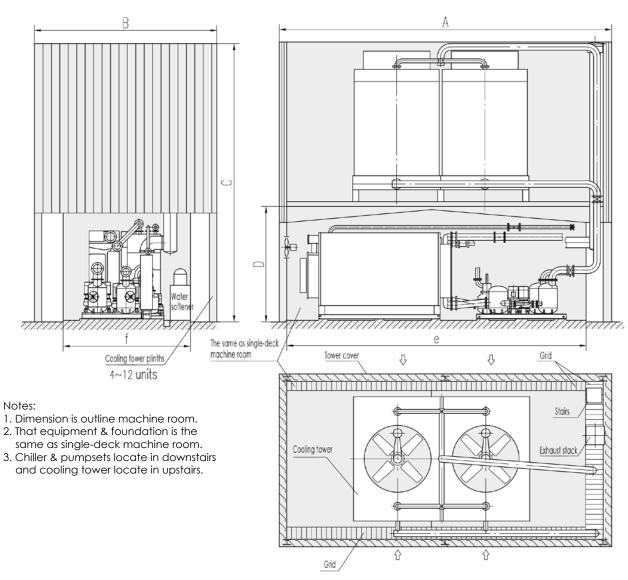

Mode	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν
BCT23	53	32.5	88	78.5	4.5	15.5	30.5	27	NPT ¾	NPT 11/2	NPT ½	NPT ½	NPT ¾	31.5
BCT70	88.5	63.5	88	98.5	5.5	35.5	41.5	57.5	NPT 11/2	NPT 21/2	NPT 11/2	NPT ½	NPT 11/2	39.5
BCT115	109	63.5	88	98.5	5.5	40	57.5	57.5	NPT 11/2	NPT 21/2	NPT 11/2	NPT ½	NPT 11/2	39.5

Packaged DFA



Packaged DFA Dimensions (with metal machine room) BZY75、BZY100、BZY125、BZY150、BZY200、BZY250、BZY300、BZY400

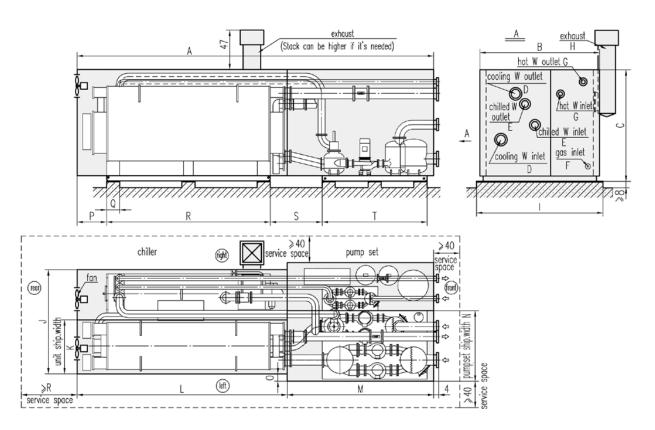
Packaged DFA Dimensions (with metal machine room)


BZY500、BZY600、BZY800、BZY1000

Mode	Α	В	С	D	Е	F	G	Н	I	J
BZY500	669	256	177	118	507	129.5	144	131	269	38
BZY600	768	256	197	138	677.5	133	144	162	269	46
BZY800	768	283.5	216.5	138	584	137	226	134.5	269	42
BZY1000	834.5	283.5	216.5	157.5	728	140	226	144.5	269	55
Model	K	L	М	Ν	0	Р	Q	R	S	T
BZY500	128	/	/	/	161.5	51.5	315	298	53	47.5
BZY600	157.5	223	512	72	153.5	57	315	98.5	58.5	53
BZY800	157.5	223	512	79	177	67.5	315	98.5	56.5	51
BZY1000	157.5	272	512	92	177	67	394	59	60	54
Model	U	V	W	Χ	Υ	Z	а	b	С	
BZY500	181	53.5	59	35.5	149.5	705	299	NPS 14	NPS 16	
BZY600	181	53.5	59	44	165	803	299	NPS 16	NPS 18	
BZY800	197	53.5	59	52.5	181	803	327	NPS 18	NPS 20	
BZY1000	197	53.5	59	51	181	872	327	NPS 18	NPS 20	

Packaged DFA Dimensions (with enclosure)

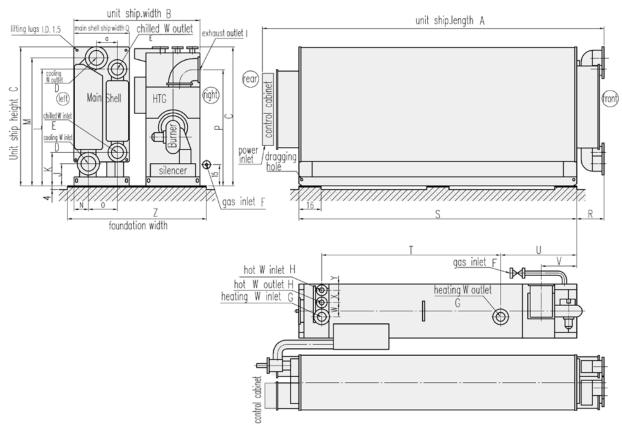
BZY75、BZY100、BZY125、BZY150、BZY200、BZY250 BZY300、BZY400、BZY500、BZY600、BZY800、BZY1000



Dimensions of double-deck machine room

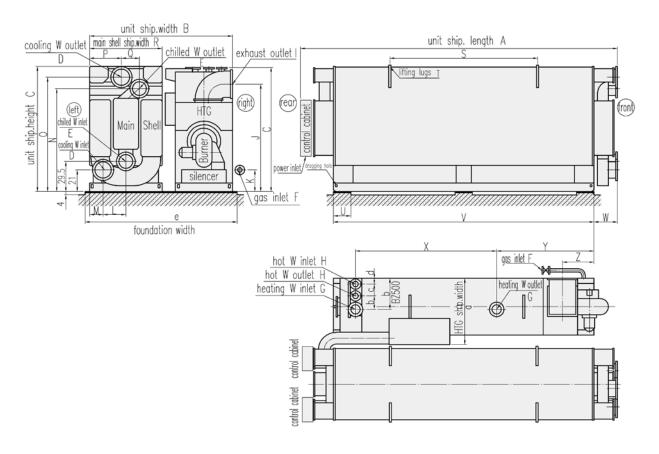
Code	Mode	Α	В	С	D	е	f
1	BZY75、BZY100	453	216.5	354.5	130	394	177
2	BZY125、BZY150	512	268	394	149.5	453	177
3	BZY200	551	268	433	165.5	492	197
4	BZY250BZY300、BZY400 BZY75×2、BZY100×2 BZY125×2、BZY150×2	630	315	453	193	571	295
5	BZY500、BZY600 BZY200×2、BZY250×2	827	374	492	201	768	354.5
6	BZY800 BZY300×2、BZY200×3	827	413.5	492	220.5	768	394
7	BZY1000 BZY400×2	984	453	531.5	220.5	834.5	433
8	BZY600×2、BZY400×3	827	787.5	492	201	827	787.5
9	BZY800×2、BZY500×3	827	827	492	220.5	827	827
10	BZY1000×2	984	866	531.5	220.5	984	866

Packaged DFA Dimensions (with enclosure)

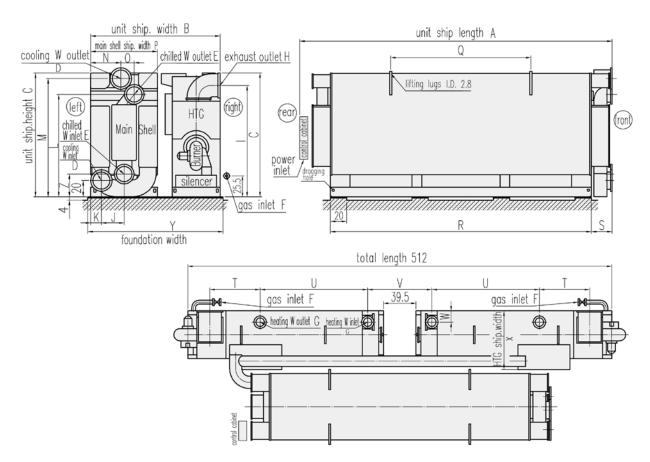

BZY75、BZY100、BZY125、BZY150、BZY200、BZY250、BZY300、BZY400、BZY500

Mode	А	В	С	D	Е	F	G	Н	I	J
BZY75	347.5	103.5	116	NPS 8	NPS 6	NPS 1	NPS 21/2	13×13	111.5	82.5
BZY100	354.5	103.5	116	NPS 8	NPS 6	NPS 11/2	NPS21/2	14×14	111.5	97.5
BZY125	397.5	125	117	NPS 10	NPS 8	NPS 11/2	NPS 3	16×16	133	100
BZY150	397.5	128	134	NPS 10	NPS 8	NPS 11/2	NPS 3	17×17	136	108
BZY200	425	140	134	NPS 12	NPS 10	NPS 2	5	22×22	149.5	125
BZY250	449	140	135.5	NPS 14	NPS 10	NPS 2	5	22×22	149.5	125
BZY300	496	149.5	135.5	NPS 14	NPS 10	NPS 2	5	24×24	157.5	140
BZY400	502	165.5	149.5	NPS 16	NPS 12	NPS 21/2	6	28×28	173	157.5
BZY500	630	157.5	149.5	NPS 16	NPS 14	NPS 3	/	31×31	181	157.5
Mode	K	L	М	N	0	Р	Q	R	S	T
BZY75	43.5	191	156	76	8	33.5	16	157.5	43.5	106
BZY100	53	240	114	76	6	33.5	16	157.5	47	114
BZY125	53	252	145.5	79	3.5	34	16	197	52.5	114
BZY150	57	252	145.5	79	0	34	16	197	52.5	114
BZY200	62.5	254	171.5	84	7.5	35.5	16	197	59	126
BZY250	62.5	289.5	159.5	84	7.5	31.5	16	236	51	126
BZY300	79	346.5	149.5	59	9.5	43	16	236	69	136
BZY400	79	352.5	149.5	59	8	43	16	236	73	145.5
BZY500	79	429	201	84	16.5	43	19.5	315	78.5	181

DFA Dimensions

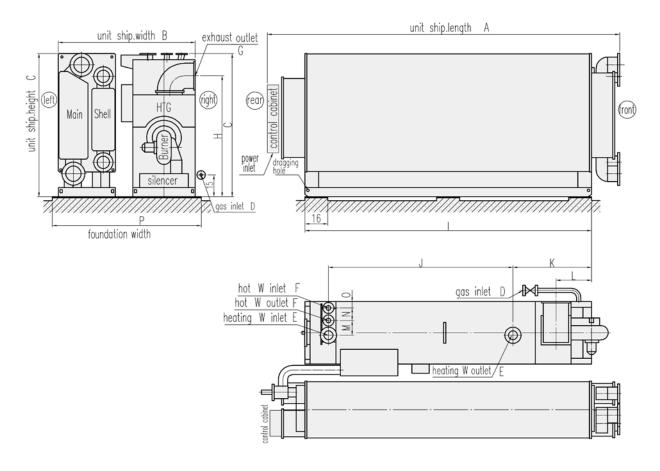

BZ75、BZ100、BZ125、BZ150

	1.								
Mode	Α	В	С	D	E	F	G	Н	l
BZ75	213.5	84.5	99	NPS 8	NPS 6	NPS 1	NPS 4	NPS 21/2	12.5×12.5
BZ100	213.5	96.5	99	NPS 8	NPS 6	NPS 11/2	NPS 5	NPS 21/2	14×14
BZ125	258	96.5	99	NPS 10	NPS 8	NPS 11/2	NPS 6	NPS 3	16×16
BZ150	260	104.5	115.5	NPS 10	NPS 8	NPS 11/2	NPS 6	NPS 3	17.5×17.5
Mode	J	K	L	М	N	0	Р	Q	R
BZ75	16	23.5	82.5	90.5	8	17	87.5	49	19
BZ100	16	23.5	82.5	90.5	10	20.5	87	57	19
BZ125	16	23.5	82.5	90.5	10	20.5	82	61	21
BZ150	19.5	27.5	94.5	106.5	11	20	98.5	61	21
Mode	S	T	U	٧	W	Χ	Υ	Z	а
BZ75	157.5	125	25.5	12	8.5	8	4	90.5	15
BZ100	157.5	125	25.5	11	9.5	8	4	102.5	15
BZ125	197	127	127	25	10	8.5	4.5	102.5	15
BZ150	197	127	127	24.5	10	8.5	4.5	110	8.5


DFA Dimensions

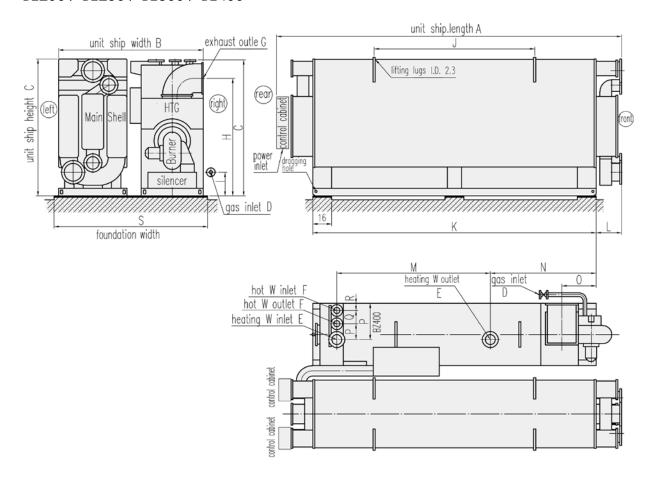
BZ200、BZ250、BZ300、BZ400、BZ500

Α	В	С	D	E	F	G	Н	1	J	K
260	126	118	NPS 12	NPS 10	NPS 2	NPS 8	NPS 5	22×22	97	19.5
303	126	118	NPS 14	NPS 10	NPS 2	NPS 8	NPS 5	22×22	99	19.5
313	139	118	NPS 14	NPS 12	NPS 21/2	NPS 8	NPS 5	24×24	98	19.5
313	151.5	134	NPS 16	NPS 12	NPS 21/2	NPS 10	NPS 6	28×28	114.5	25.5
392	161.5	134	NPS 16	NPS 14	NPS 3	NPS 10	/	31×31	116	25.5
L	М	N	0	Р	Q	R	S	T	U	٧
17	11.5	93	105	28.5	11	82.5	118	I.D. 2.4	16	197
16.5	12	92.5	104.5	28.5	13.5	82.5	134	I.D. 2.4	16	236
20.5	12	94	104.5	29	16	94.5	134	I.D. 2.4	16	236
22	13	107	119	31	17	100.5	134	I.D. 2.4	16	236
22.5	12.5	107	119	29.5	19	98.5	169	I.D. 2.8	19.5	315
W	Χ	Y	Z	а	b	С	d	е		
21	128	53	22	66	12.5	10.5	5.5	130		
23	128	88	29.5	65	12.5	10.5	5.5	130		
23	128	88	28.5	69	12.5	10.5	5.5	145.5		
23	130	87	26.5	73	14	12	5.5	157.5		
23	130	140.5	140.5	82.5	16	/	/	161.5		
	260 303 313 313 392 L 17 16.5 20.5 22 22.5 W 21 23 23	260 126 303 126 313 139 313 151.5 392 161.5 L M 17 11.5 16.5 12 20.5 12 22 13 22.5 12.5 W X 21 128 23 128 23 128 23 130	260 126 118 303 126 118 313 139 118 313 151.5 134 392 161.5 134 L M N 17 11.5 93 16.5 12 92.5 20.5 12 94 22 13 107 22.5 12.5 107 W X Y 21 128 53 23 128 88 23 128 88 23 128 88	260 126 118 NPS 12 303 126 118 NPS 14 313 139 118 NPS 14 313 151.5 134 NPS 16 392 161.5 134 NPS 16 L M N O 17 11.5 93 105 16.5 12 92.5 104.5 20.5 12 94 104.5 22 13 107 119 22.5 12.5 107 119 W X Y Z 21 128 53 22 23 128 88 29.5 23 128 88 28.5 23 130 87 26.5	260 126 118 NPS 12 NPS 10 303 126 118 NPS 14 NPS 10 313 139 118 NPS 14 NPS 12 313 151.5 134 NPS 16 NPS 12 392 161.5 134 NPS 16 NPS 14 L M N O P 17 11.5 93 105 28.5 16.5 12 92.5 104.5 28.5 20.5 12 94 104.5 29 22 13 107 119 31 22.5 12.5 107 119 29.5 W X Y Z 21 128 53 22 66 23 128 88 28.5 69 23 130 87 26.5 73	260 126 118 NPS 12 NPS 10 NPS 2 303 126 118 NPS 14 NPS 10 NPS 2 313 139 118 NPS 14 NPS 12 NPS 2½ 313 151.5 134 NPS 16 NPS 12 NPS 2½ 392 161.5 134 NPS 16 NPS 14 NPS 3 L M N O P Q 17 11.5 93 105 28.5 11 16.5 12 92.5 104.5 28.5 13.5 20.5 12 94 104.5 29 16 22 13 107 119 31 17 22.5 12.5 107 119 29.5 19 W X Y Z a b 21 128 53 22 66 12.5 23 128 88 29.5 65 12.5 23 128 88 28.5 69 12.5 23	260 126 118 NPS 12 NPS 10 NPS 2 NPS 8 303 126 118 NPS 14 NPS 10 NPS 2 NPS 8 313 139 118 NPS 14 NPS 12 NPS 2½ NPS 8 313 151.5 134 NPS 16 NPS 12 NPS 2½ NPS 10 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 L M N O P Q R 17 11.5 93 105 28.5 11 82.5 16.5 12 92.5 104.5 28.5 13.5 82.5 20.5 12 94 104.5 29 16 94.5 22 13 107 119 31 17 100.5 22.5 12.5 107 119 29.5 19 98.5 W X Y Z a b c 21 128 53 22 66 12.5 10.5 23 </td <td>260 126 118 NPS 12 NPS 10 NPS 2 NPS 8 NPS 5 303 126 118 NPS 14 NPS 10 NPS 2 NPS 8 NPS 5 313 139 118 NPS 14 NPS 12 NPS 2½ NPS 8 NPS 5 313 151.5 134 NPS 16 NPS 12 NPS 2½ NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 // NPS 10 NPS 2<td>260 126 118 NPS 12 NPS 10 NPS 2 NPS 8 NPS 5 22×22 303 126 118 NPS 14 NPS 10 NPS 2 NPS 8 NPS 5 22×22 313 139 118 NPS 14 NPS 12 NPS 2½ NPS 8 NPS 5 24×24 313 151.5 134 NPS 16 NPS 12 NPS 2½ NPS 10 NPS 6 28×28 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 / 31×31 L M N O P Q R S T 17 11.5 93 105 28.5 11 82.5 118 I.D. 2.4 16.5 12 92.5 104.5 28.5 13.5 82.5 134 I.D. 2.4 20.5 12 94 104.5 29 16 94.5 134 I.D. 2.4 22.5 12.5 107 119</td><td>260</td></td>	260 126 118 NPS 12 NPS 10 NPS 2 NPS 8 NPS 5 303 126 118 NPS 14 NPS 10 NPS 2 NPS 8 NPS 5 313 139 118 NPS 14 NPS 12 NPS 2½ NPS 8 NPS 5 313 151.5 134 NPS 16 NPS 12 NPS 2½ NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 NPS 6 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 // NPS 10 NPS 2 <td>260 126 118 NPS 12 NPS 10 NPS 2 NPS 8 NPS 5 22×22 303 126 118 NPS 14 NPS 10 NPS 2 NPS 8 NPS 5 22×22 313 139 118 NPS 14 NPS 12 NPS 2½ NPS 8 NPS 5 24×24 313 151.5 134 NPS 16 NPS 12 NPS 2½ NPS 10 NPS 6 28×28 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 / 31×31 L M N O P Q R S T 17 11.5 93 105 28.5 11 82.5 118 I.D. 2.4 16.5 12 92.5 104.5 28.5 13.5 82.5 134 I.D. 2.4 20.5 12 94 104.5 29 16 94.5 134 I.D. 2.4 22.5 12.5 107 119</td> <td>260</td>	260 126 118 NPS 12 NPS 10 NPS 2 NPS 8 NPS 5 22×22 303 126 118 NPS 14 NPS 10 NPS 2 NPS 8 NPS 5 22×22 313 139 118 NPS 14 NPS 12 NPS 2½ NPS 8 NPS 5 24×24 313 151.5 134 NPS 16 NPS 12 NPS 2½ NPS 10 NPS 6 28×28 392 161.5 134 NPS 16 NPS 14 NPS 3 NPS 10 / 31×31 L M N O P Q R S T 17 11.5 93 105 28.5 11 82.5 118 I.D. 2.4 16.5 12 92.5 104.5 28.5 13.5 82.5 134 I.D. 2.4 20.5 12 94 104.5 29 16 94.5 134 I.D. 2.4 22.5 12.5 107 119	260


BZ600、BZ800、BZ1000

Mode	Α	В	С	D	Е	F	G	Н	I
BZ600	386	152	145.5	NPS 18	NPS 16	NPS 21/2	NPS 8	24×24	114.5
BZ800	388	172	154	NPS 200	NPS 18	NPS 21/2	NPS 10	28×28	134.5
BZ1000	456	172	154	NPS 200	NPS 18	NPS 3	NPS 10	31×31	136
Mode	J	K	L	М	Ν	0	Р	Q	R
BZ600	24	13.5	109	130.5	34	12	89	177	315
BZ800	27.5	13	124	143	36.5	16	80.7	177	315
BZ1000	27.5	13	124	143	36.5	16	80.7	197	393.5
Mode	S	T	U	٧	W	Х	Υ	Z	
BZ600	25	60	128	79.5	12	69	153.5	27.5	
BZ800	27	60.5	130	77.5	13.5	73	163.5	27.5	
BZ1000	27	62	130	77.5	16	82.5	169	31	

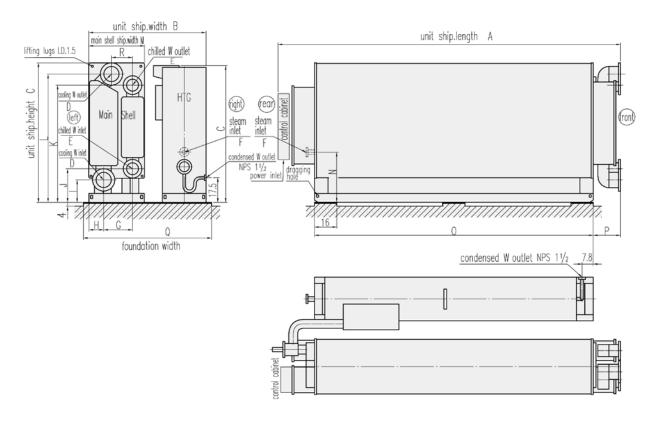
HTG Enlarged Model Dimensions


BZ75、BZ100、BZ125、BZ150

HTG Enlarged H3,H4 dimensions (HTG Enlarged H1,H2 is the same size with standard models) (Refer to P26 of the DFA standard model for dimensions not shown in the drawing)

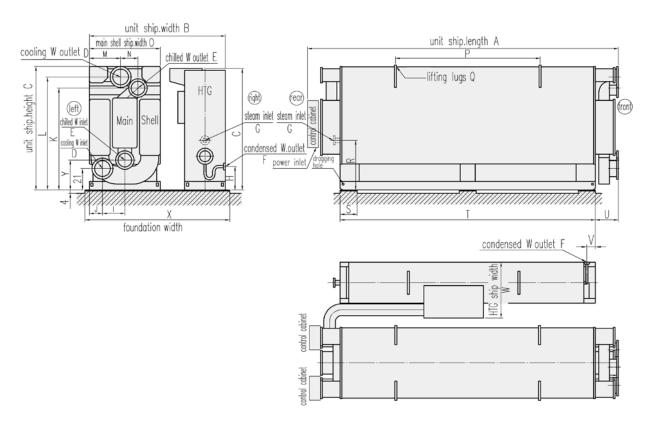
Mode	Α	В	С	D	Е	F	G	Н
BZ75	213.5	88.5	99	NPS 11/2	NPS 5	NPS 21/2	14×14	87
BZ100	213.5	95	99	NPS 11/2	NPS 6	NPS 3	16×16	82
BZ125	258	98.5	99	NPS 11/2	NPS 6	NPS 3	17×17	83
BZ150	260	104.5	115.5	NPS 2	NPS 8	NPS 5	22×22	99.5
Mode	I	J	K	L	М	N	0	Р
BZ75	157.5	125	25.5	11	8.5	8	4	94.5
BZ100	157.5	127	29.5	1	10	8	4.5	102.5
BZ125	197	127	54	24.5	10	8.5	4.5	110
BZ150	197	128	53	22	13	11	6	114

BZ200、BZ250、BZ300、BZ400



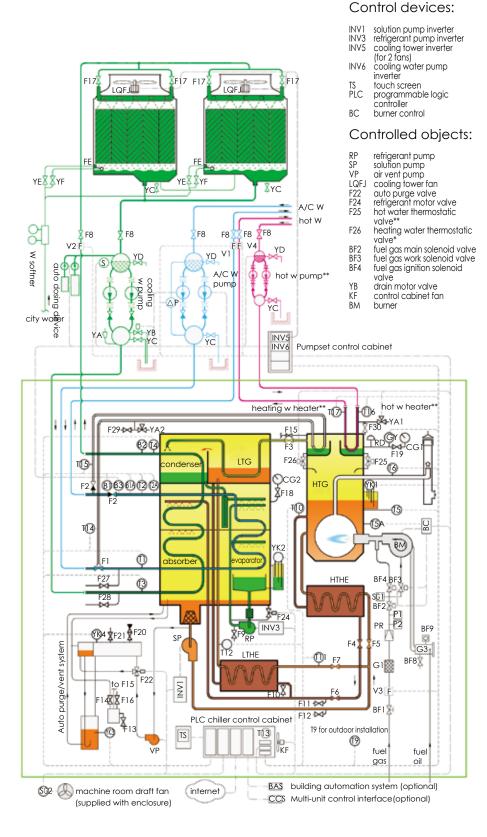
HTG Enlarged H3,H4 dimensions (HTG Enlarged H1,H2 is the same size with standard models) (Refer to P27 of the DFA standard model for dimensions not shown in the drawing)

Mode	Α	В	С	D	Е	F	G	Н	I	J
BZ200	260	126	118	NPS 2	NPS 8	NPS 5	22×22	97	19.5	118
BZ250	303	130	118	NPS 21/2	NPS 8	NPS 5	24×24	98	19.5	134
BZ300	313	144.5	118	NPS 21/2	NPS 10	NPS 6	28×28	106	19.5	134
BZ400	313	158	134	NPS 3	NPS 10	/	31×31	116	25.5	134
Mode	K	L	М	Ν	0	Р	Q	R	S	
BZ200	197	21	128	65	6	13	11	6	124	
BZ250	236	23	128	88	28.5	13	11	6	128	
BZ300	236	23	130	87	26.5	16	12	8	147.5	
BZ400	236	23	130	86.5	25	16	/	/	165.5	


Steam Chiller Dimensions

BS75、BS100、BS125、BS150

Mode	Α	В	С	D	Е	F	G	Н	I
BS75	213.5	75	99	NPS 8	NPS 6	NPS 11/2	17.5	8	16
BS100	213.5	82.5	99	NPS 8	NPS 6	NPS 2	20.5	10	16
BS125	258	82.5	99	NPS 10	NPS 8	NPS 2	20.5	10	16
BS150	260	90.5	115.5	NPS 10	NPS 8	NPS 21/2	20	11	19.5
Mode	J	K	L	М	Ν	0	Р	Q	R
BS75	23.5	82.5	90.5	49	42.5	157.5	19	79	15
BS100	23.5	82.5	90.5	57	35.5	157.5	19	90.5	15
BS125	23.5	82.5	90.5	61	35.5	197	21	90.5	15
BS150	27.5	94.5	106.5	61	52	197	21	94.5	8.5


BS200、BS250、BS300、BS400、BS500、BS600、BS800、BS1000

Mode	Α	В	С	D	E	F	G	Н	I	J	K	L	М
BS200	260	112	118	NPS 12	NPS 10	NPS 11/2	NPS 3	22	17	12	93	105	29
BS250	303	112	118	NPS 14	NPS 10	NPS 11/2	NPS 3	22	16	12	93	104	29
BS300	313	131	118	NPS 14	NPS 12	NPS 2	NPS 4	22	21	12	94	104	29
BS400	313	137	134	NPS 16	NPS 12	NPS 2	NPS 4	24	22	13	107	119	31
BS500	382	137	134	NPS 16	NPS 14	NPS 2	NPS 5	24	22	12	107	119	30
BS600	386	143	146	NPS 18	NPS 16	NPS 21/2	NPS 5	24	24	13	109	130	34
BS800	388	159	154	NPS 20	NPS 18	NPS 21/2	NPS 6	24	27	13	124	143	36
BS1000	456	159	154	NPS 20	NPS 18	NPS 21/2	NPS 6	24	27	13	124	143	36
Mode	N	0	Р	Q	R	S	T	U	٧	W	Χ	Υ	
BS200	11	83	118	2.4	46	16	197	21	8	47	118	28	
BS250	13	83	134	2.4	46	16	236	23	8	47	118	28	
BS300	16	94	134	2.4	46	16	236	23	8	53	134	28	
BS400	17	100	134	2.4	55	16	236	23	12	55	138	28	
BS500	19	98	169	2.8	55	20	315	23	12	55	138	28	
BS600	12	99	177	2.8	55	20	315	25	12	55	146	28	
BS800	16	81	177	2.8	67	20	315	27	12	67	161	28	
BS1000	16	81	197	2.8	67	20	394	27	12	67	161	31	

Note: All units are in inch. Some dimension drawings are not included in this manual. Please request from BROAD or download CAD files from www.broad.com.

Packaged DFA P&I Diagram

Notes:

- 1. Chiller scope
- 2. Parts marked with "**" are not applicable to cooling/heating type, and those marked with "*" & "**" are not applicable to cooling only type
- 3. Line type:

actuator output ----- sensor input

----- communication

Sensors:

chilled W inlet temp sensor chilled W outlet temp sensor chilled W calibration temp T2A sensor cooling W inlet temp sensor cooling W outlet temp sensor HTG temp sensor (to PLC) HTG temp control (to burner) exhaust temp sensor T6 ambient temp sensor HTG crystallization sensor T11 LTHE diluted solution inlet temp sensor LTG crystallization sensor control cabinet temp sensor control cabinet temp sensor heating W inlet temp sensor* heating W outlet temp sensor* hot w inlet temp sensor** hot w outlet temp sensor** chilled W flow switch chilled W flow switch cooling W flow switch chilled W flow switch switch cooling W flow switch chilled W flow switch switch cooling W flow switch special sensor for the switch sensor for switch sensor for the switch sensor for switch switc T16 T17 BIA B2 B3 GY YK1 YK2 YK3 pressure control HTG solution level probe refrigerant level probe non-condensable gas sensor auto air vent probe chilled/heating W flowmeter cooling W flowmeter gas flowmeter YK4 V2 V3 V4

Others:

ΔΡ

SG1

chilled /heating W. switch

hot W flowmeter conductivity sensor

(optional)

sensor

differential pressure sensor

burner gas leakage sensor machine room gas leakage

chilled/heating W outlet single F2

valve³

steam angle valve concentrated solution angle F4

valve F.5 diluted solution angle valve

F6 HTG concentration regulating

LTG concentration regulating F7 valve

water system shutoff valve

F8 F9 refrigerant sampling valve

F10

HTHE sampling valve diluted solution sampling

valve

F13 F14 F15 main purge valve direct purge valve

HTG purge valve

sampling purge valve

balance valve

main shell pressure detecting valve

F19 HTG pressure detecting valve F20

vacuum vent valve & mannual valve

nitrogen charging valve

chilled water drain valve cooling water drain valve

F27 F28 F29 F30

heating water drain valve* hot water drain valve**

hot water pressure release valve**

YA2 heating water pressure

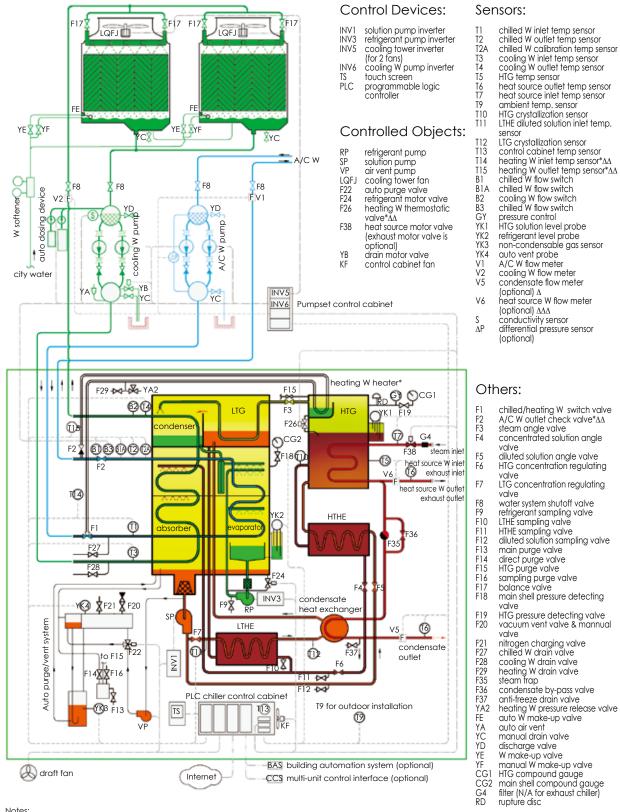
release valve*

auto water make up valve fuel gas ball valve fuel oil filter discharge valve, fuel oil filter vent valve BF8 BF9 P1

lower limit pressure switch upper limit pressure switch P2

fuel gas pressure regulator gas filter oil filter auto air vent

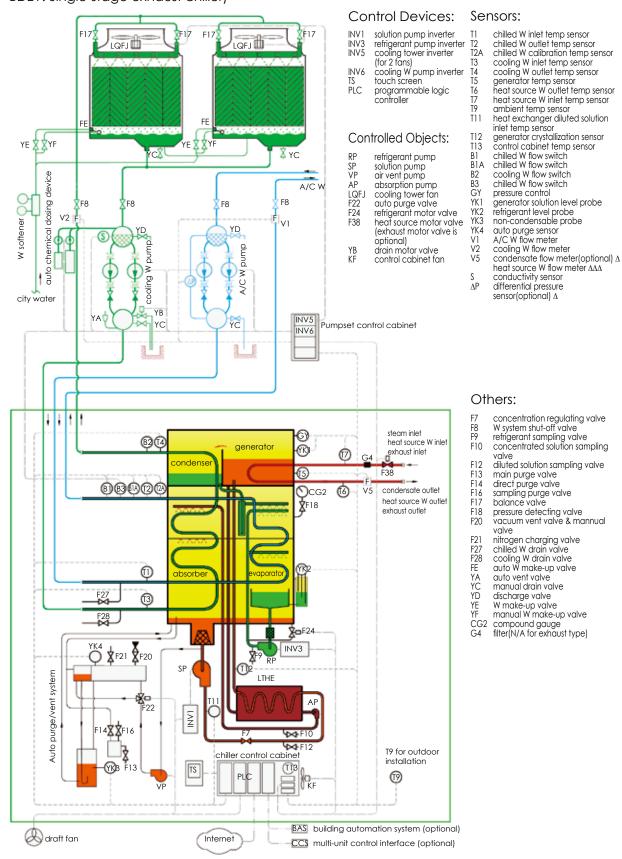
PR G1 G3 YA YC YD


auto dir veni manual drain valve discharge valve water makeup valve manual water makeup valve

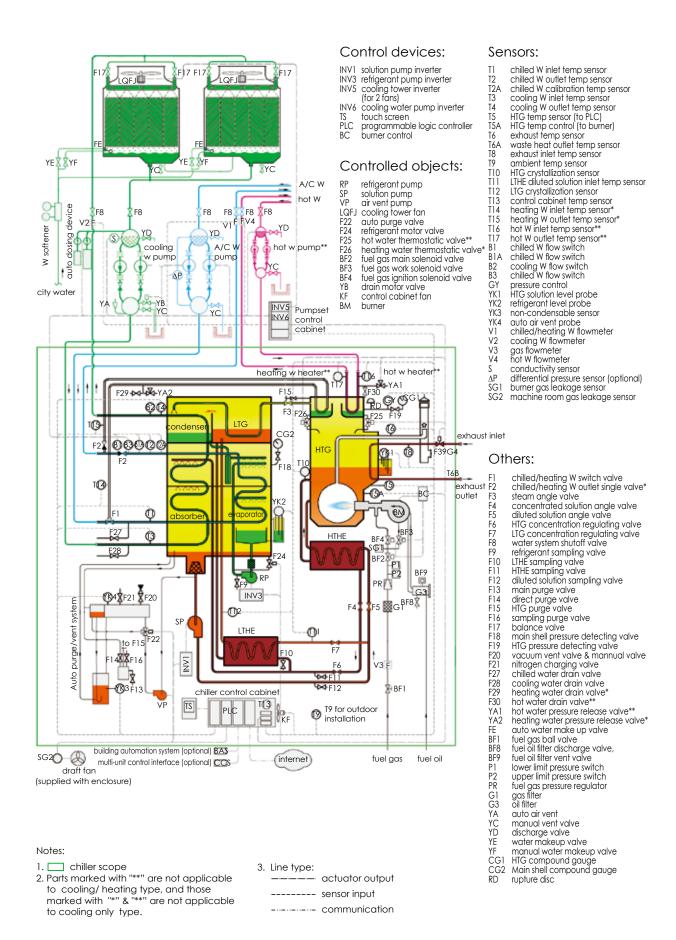
HTG compound gauge Main shell compound gauge

rupture disc

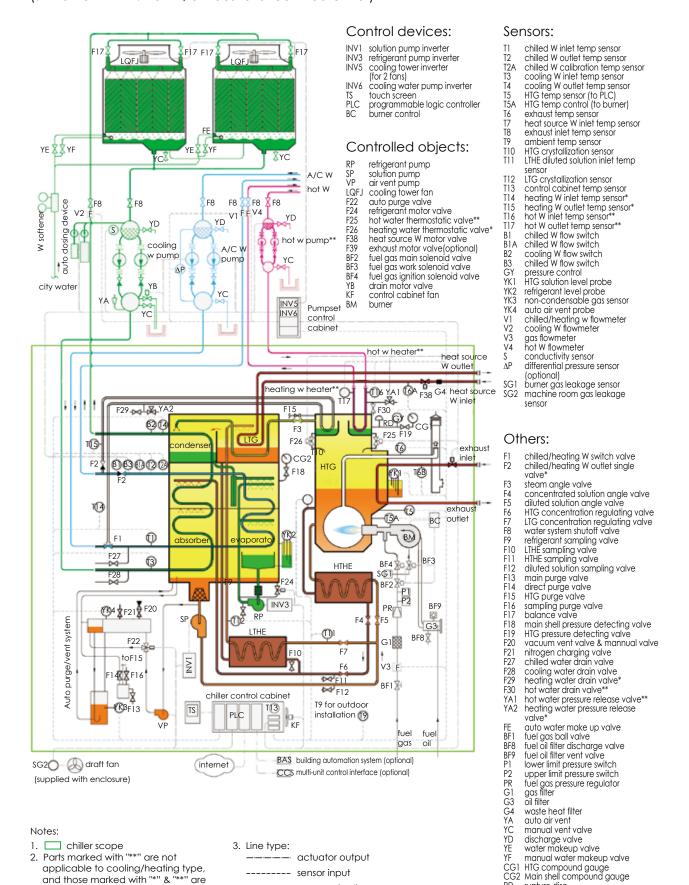
Packaged Steam Chiller


(similar for BSY: steam chiller, BHY: hot W chiller, BEY: exhaust chiller)

- 1. Chiller scope.
- 2. The components marked with " Δ " for steam chiller, and marked with " $\Delta\Delta$ " for exhaust chiller, 'ΔΔΔ" for hot W chiller.
- 3. The components marked with "*" are N.A with cooling only models.
- 4. Line type: - actuator signal output ----- sensor signal input ----- communication


Packaged Single-stage Steam Chiller

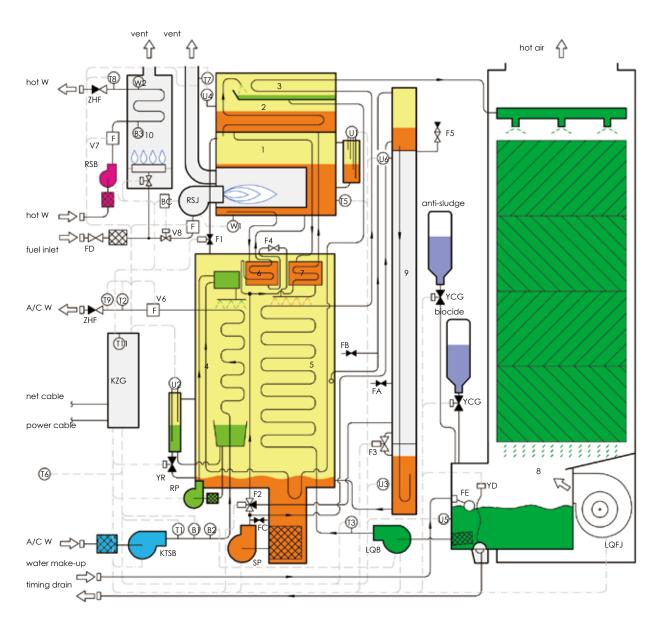
(similar for BDSY: Single-stage steam chiller, BDHY: Single-stage hot W chiller, BDEY: Single-stage exhaust chiller)


- 1. chiller scope.
- The components marked with "Δ" for steam chiller, and marked with "ΔΔ" for exhaust chiller, "ΔΔΔ" for hot W chiller.
- 3. Line type: ——— actuator signal output
 - ----- sensor signal input ----- communication

Packaged Exhaust & Direct-fired Chiller

Packaged Multi-energy Chiller

(similar for BZHEY: Hot W, exhaust & direct-fired chiller)



----- communication

not applicable to cooling only type.

rupture disc

Micro Non-electric Chiller

Note:

- 1 HTG LTG
- 3 condenser
- evaporator 5 absorber
- HTHE
- ITHE
- 8 cooling tower
- 9 auto purge device 10 hot W . heater *
- refrigerant pump KTSB chilled/heating W pump LQB cooling W pump hot W pump RSB LQFJ cooling tower fan RSJ burner

solution pump

SP

RP

- cooling/heating switch F1 vent three-way valve vent reflow valve F2 F3
- HTG concentration regulating valve F5 vacuum vent valve &
- mannual valve ٧6 chilled/heating W
- flowmeter

- heating W flow meter V7 V8 gas flowmeter
- YR refriaerant valve
- ΥD drain device(timer on) water make-up floating ball valve
- YCG cooling water quality stabilizer valve (manual)
- non-condensable chamber purge valve(manual)
- direct purge valve(manual)
- solution valve (manual) fuel valve(manual)

- ZHF check valve
- KZG outdoor control cabinet BC. burner control
- A/C W inlet temp sensor Τ1 A/C W outlet temp sensor T2
- cooling W inlet temp sensor T3 HTG temp sensor (to PLC)
- T.5 ambient temp sensor exhaust temp sensor T6
- T7 hot W temperature sensor
- T8 A/C W calibration temp T9 sensor
- T11 control cabinet temp sensor
- HTG temp switch W2 hot W temp switch

W1

- A/C W flow switch R1
- A/C W flow switch B2
- hot W flow switch **B**3
- HTG solution level probe U1
- refrigerant level probe 112
- non-condensable sensor LTG crystallization sensor U3
- U4
- cooling W level probe U5
- vent over level probe

Note:

1. Parts marked with "*" are for hot water, not applicable to cooling-heating type.

Parts marked with "**" are for heating operation, not applicable to cooling only type.

2. Line type:

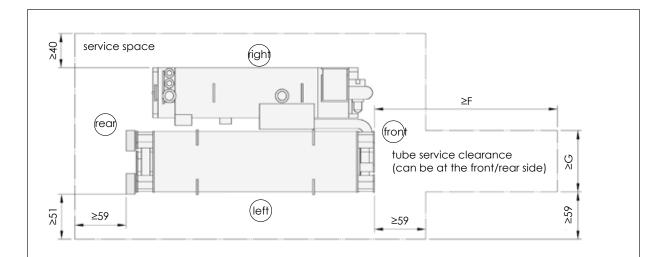
--- actuator output ----- sensor input

Scope of Supply/Work

Category	Item	BROAD	Customer	Remarks
Transportation and location	factory to port		√	BROAD can arrange transportation upon request
	port to jobsite		√	
	Jobsite handling (main shell, pumpset)		√	
	joint (for split shipment)	√		Option
Electric	Power supply to enclosure		√	3 phase, 4 wires
engineering	Internet connection	√		Network cable to the enclosure is to be provided by users
	Grounding		√	Place special grounding terminal with grounding resistance $\leq 4\Omega$ near water system control cabinet
Construction & installation	Foundation		√	Enclosure should be installed after foundation is completed
	Installation of metal enclosure		√	
	Pipe connection between chiller and pumpset		√	≥ BY400 model, a crane must be provided by customer
	Pipe connection between chiller and cooling tower		√	
	External piping installation		√	Includes chilled/heating water pipes, hot water pipes, water make-up and drain pipes, energy source pipes
	chiller insulation	V		factory-mounted
	Piping insulation in enclosure	V		
	pipeline insulation		√	
	Antifreezing		√	Water anti-freeze treatment is recommended when the ambient temp is below 32°F
Commissioning	Jobsite chiller commissioning	V		User provides energy and air conditioning load. Customers need to pay BROAD for commissioning
Operation &	Operator training on site	V		
maintenance	Regular maintenance warranty	V		Option

Machine Room Construction Tips

Machine room


Machine rooms must be well ventilated with temp. humidity control and drain functions. It contains the service space.

Attention should be paid to machine room built by customers:

- Ventilation: poor ventilation leads to high humidity in the machine room, which may erode the unit. So serious attention should be paid to ventilation in the machine room. Please ventilate 2X machine rooms every hour and make up the combustion air. The volume of combustion air for a DFA is estimated at 14 ft³ for every MBH fuel.
- Drainage:
 - a. Chiller foundation must be on a high level in the machine room.
 - b. All discharge pipes and drain pipes must be visible above the drainage.
- Machine room in basement must be built above a water ditch, which is equipped with an auto levelcontrolled submerged pump.
- Temperature: Machine room temperature must be controlled within 41~109°F. Lower temperature may result in freezing of water systen which could damage chiller; higher temperature may damage electrical components. Thermometer and over temperature alarm must be installed in machine room.
- Humidity: Machine room humidity must be lower than 85%. Higher humidity may impair insulation of electrical components.
- Chiller service space

Foundation

- Please refer to dimension drawings for plinth dimensions
- Load capacity:
 - a. The machine room foundation load is recommended as 1.5 times of the operation weight.
 - b. Make sure that the foundation is level without sinking or overload (for rooftop installation).
 - c. The load of a chiller is evenly distributed on the contact surface between the frame base rolling steel and the plinth.
- Anchor bolts:
 - a. Chiller can be placed on the foundation directly without bolts (if there is a strong earthquake source or special anti-vibration requirement, please specify in a purchase order).
 - b. Anchor bolts must be pre-installed for pumpset foundation per dimension drawings.

Service space:

unit: inch

Mode	20	50	75	100	125	150	200	250	300	400	500	600	800	1000
F	90.5	126	145.5	145.5	177	177	177	216.5	216.5	216.5	275.5	275.5	275.5	354.5
G	25.5	31.5	35.5	43.5	45.5	51	67	67	77	82.5	94.5	94.5	102.5	102.5

- 1. If the machine room is smaller than the above size, please contact BROAD for a solution.
- 2. F, G is the tube service clearance that can use space of water pumps, doors or windows and can also be shared by 2 chillers.
- 3. It is recommended that the height of the machine room be 20 inch higher than that of chillers.

Piping System

Gas system

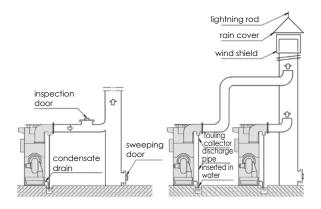
- The standard pressure is 63~197 inchH₂O(2.3~7.3 psig).
 Lower or higher pressure can be accommodated to special orders.
- Dr.ain valve should be installed at the lowest part of gas pipes. All connecting pipes must be cleaned and tested for air tightness with 87 psig air when gas piping system is completed
- When two or more units are connected in parallel, a buffer pipe (with diameter 3-6 times of the main pipe) must be installed at the main pipe to avoid flameout due to gas low pressure caused by simultaneous startup. Manual drain valve should be equipped at the bottom of the buffer tube
- Customers are required to inform BROAD of the fuel type, heating value and pressure so that a burner can be properly selected and the gas pipe diameter can be notified to customers. Then customers can design filter, flow meter, ball valve, diffuser tube and pressure meter. BROAD is responsible for installation of gas train valves within supply scope. External gas piping system is to be installed by customers to 1m distance from the burner.
- The ball valve of BROAD gas valve train must be closed if customers need to test piping pressure so that gas train valve will not be damaged by high pressure.
- A gas leakage alarm (acting value must be set 20% lower than danger value lower limit) must be equipped in machine room and be linkage controlled with draft fans. Machine room must be well ventilated all the time.

Oil system

- Oil system includes oil storage tank, oil pump, daily oil tank, oil filter and metering instruments. Oil tank should be equipped with oil check nozzle, air vent (breather valve), oil refill valve, oil level sensor and drain valve. The lowest oil level of daily oil tank must be 0.1 m higher than the burner.
- Oil pipe should be copper pipe or seamless steel pipe and leakage test should be taken at 0.8MPa min.
- Medium filters are to be installed at inlet and outlet of oil storage tank. The filters should have enough section area, and should be convenient to install/uninstall and drain.
- Oil tank should be equipped with precision metering device.

Steam system

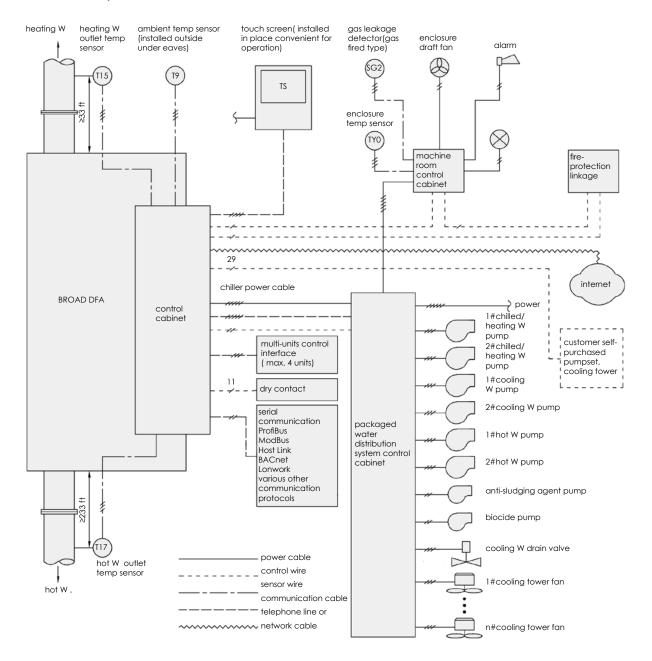
- The supply of the steam should be pressure-stable. The upper limit should not be over 110% of the rated pressure.
 If the pressure may exceed the upper limit, a regulating valve should be equipped in the pipeline.
- Safety valve should be fixed in the steam inlet pipeline. The protection value is adjusted as 110%~130% of its working pressure. The safety valve should be connected to outdoor to avoid the overpressure of the system.
- Condensed water should be able to drain smoothly.
 Condensed water can be stored in an open tank beside the chiller, and then pumped back to the boiler by a condensed water pump or steam trap pressurizer.

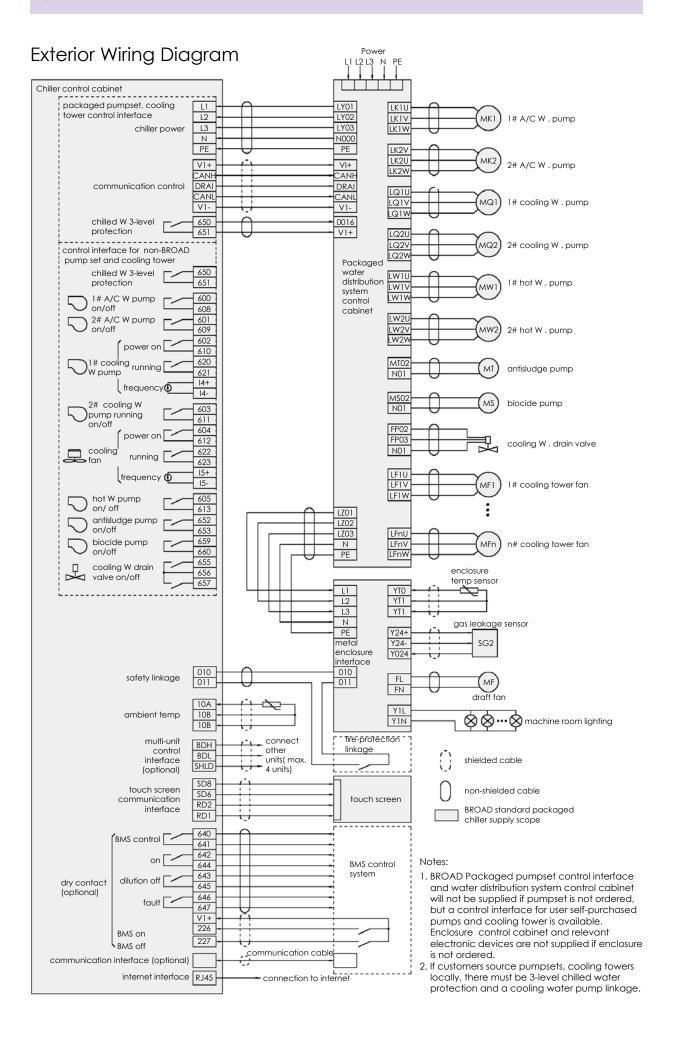

Water system

- The initial filling of the chilled/heating water must be with soft water. The leakage rate should be less than 10% every year, or else large amount of city water makeup will cause water system fouling.
- Minor leakage in chilled/heating water system is made up from the expansion water tank. An open expansion water tank instead of a closed expander is recommended for pressure balance. The water expansion volume is calculated as 4% of total water volume in the system.
- Chiller, pump set and cooling tower should be in one to one correspondence to achieve more energy saving.
- BROAD packaged chiller (pumpset) has introduced auto dosing system to solve the conventional problems with cooling water system such as corrosion inhibitor and biocide, especially legionnaire. There is a motor drain valve at the bottom of cooling water system (It's with BROAD packaged chiller supply).

- When the distance between cooling tower and machine room is ≤ 98 ft, the cooling water pipe diameter can follow the dimension drawing. If it's 98~295 ft, the pipe diameter shall be one size larger. If it's >295 ft, the pipe diameter shall be two size larger.
- In water system, zero resistance filter with section area 8-15 times larger than pipe section area instead of Y-shape filters shall be used to minimize the water resistance.
- Soft connector must be installed at inlet/outlet of chilled/ cooling water and hot water system. The weight of the external piping system can never be borne by the chiller.
- The installation site of the cooling tower should be far from heat source and power, especially should be at least 240 inch far from the chimney, or the chimney should be 80 inch higher than the top of the cooling tower. Otherwise the exhaust may access the cooling tower and cause corrosion to copper tubes inside the chiller.
- Piping requirements: all pipes and valves should not go across the space above the chiller to avoid chiller damage caused by pipe installation, maintenance or leakage.
- Secondary heat exchange hot water system is recommended for areas with very hard water.
- Hot W. system for BY20,BY50 must adopt secondary heat exchange.

Exhaust system


- It is recommended independent stack be used for each chiller. If chillers have to share a common stack due to space limitation, the shared stack must be inserted type and the main stack must be bigger and higher to avoid any interference from each other. Exhaust motor valve shall be installed for each exhaust duct to avoid corrosion caused by exhaust entering into chillers that are not in operation.
- The exhaust volume is dependent on the fuel heat input. It is estimated at 16.8 ft³ per kW fuel input. 118-197inch/s flue gas flow velocity in the stack is recommended.
- Fouling collector should be installed at flue duct inlet to the chiller to prevent condensate from flowing directly into the chiller. The indoor flue duct must be insulated. For high outdoor steel stack, insulation shall be done to maintain the up force of flue. No insulation is required for low outdoor steel exhaust stack. Try to locate the exhaust outlet as far as possible from the cooling tower, or 80 inch higher than the cooling tower. Otherwise the flue gas may get into cooling tower and damage the chiller.
- The rated exhaust temperature is 320°F. However, selection of insulation materials and design of fire isolation area should be based on 572°F temperature for safety concern.


An exhaust system illustration

Ventilation system is included in machine room supply if BROAD packaged chiller is ordered.

Control System

- 1. BROAD Packaged chiller control system includes control interfaces for chiller, pumpset, cooling tower, outdoor enclosure, internet remote monitoring, BMS and multiple-unit control,etc.
- Pumpset and cooling tower control interface and water distribution system control cabinet are supplied with pumpset. Enclosure control cabinet and relevant electrical parts are supplied with enclosure.
- 3. The customers who order several standard packaged chillers can choose multiple-unit control interface, which can automatically control the number of operational chillers according to load changes.
- 4. BMS control interface includes "Serial Communication" and "Dry-contact" options. Serial Communication interface can be either HostLink, ModBus, ProfiBus, BACnet or Lonwork protocol. They are all options.
- 5. If the customer does not order pumpset, standard control interface for pumpset and cooling tower will be provided.

List of Control System Installation

Item		Installation position and requirement	Material	Source	BROAD scope	Customer scope
Chiller	Chiller and pumpset grounding	Grounding resistance ≤4Ω	Grounding wire	Customer	/	Grounding setup and wiring
	Chiller power	Control cabinet of chiller and water system	5-core cable (33 ft standard supply)	BROAD	Wiring inside chiller control cabinet	Cable installation
	Touch screen	Anywhere in office (on the wall or desk) humidity 0~85% (no condensate), temperature 32~86 °F	5-core shielded cable (98 ft standard supply)	BROAD	Wiring inside chiller control cabinet	Cable installation
	Network monitoring	Chiller control cabinet	Network cable	Customer	Wiring inside chiller control cabinet	Cable installation, wiring at building side
	BMS interface (optional)	Chiller control cabinet	Communication cable (for serial communication), 11-core cable (for dry contact)	Customer	Wiring inside chiller control cabinet	Cable installation, wiring at network side
	Ambient temperature sensor	Ventilation and avoid direct sunlight	3-core cable (standard cable is 33 ft)	BROAD	Chiller control cabinet wiring	Temperature sensor installation wiring*
	Heating W outlet temperature sensor, hot W outlet temperature sensor	At heating W/ hot W pipe outlet side 33 ft away from the chiller	3-core cable (standard cable is 33 ft)	BROAD	Wiring	Temperature sensor installation
Pumpset	Installation of water distribution system control cabinet and power connection	Water distribution system control cabinet	Installation bolts 5-core cable	Customer	Wiring inside chiller control cabinet	Cable & control cabinet installation
	Wiring between chiller and water distribution system control cabinet	Between chiller and water distribution system control cabinet	Cable supply as per packaged chiller	BROAD	Wiring inside chiller control cabinet	Cable installation
	Wiring between pumpset and water distribution system control cabinet	Between water distribution system control cabinet and pumpset	Cable supply as per standard pumpset	BROAD	Wiring inside chiller control cabinet	Cable installation

Transportation Tips

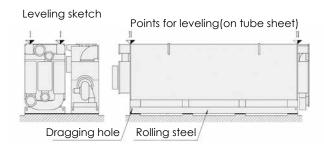
Shipping status

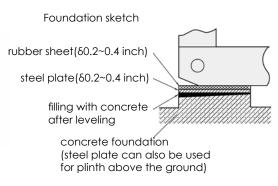
- BY20 is to be shipped in one piece, while BY30 BY50 in two pieces.
- BY75~1000 chiller and pumpset are to be shipped separately.
- BY75~400: pumpset and control cabinet are to be shipped in 3 pieces.BY500~1000: pumpset and control cabinet are to be shipped in 3~5 pieces (A/C water pumpset, cooling water pumpset and control cabinet)
- All equipment can be containerized as per "Container Arrangement Reference".
- Chillers ≤ BZ75, BE75, BS100(Max. width ≤ 83 inch) in single piece.
- Other units will be in 2~4 pieces shipment.
- If limited by site space or machine room access, small unit can also be split shipment (or split with steel

- frame), or steel-joint split shipment (i.e. the main shell and HTG are split and soldered by steel plates, which will be cut off before entering the machine room).
- When the unit reaches the machine room, the split pieces need to be connected by BROAD welders.
 The customer needs to prepare welding facilities, nitrogen and other necessary help.
- Solution is charged into the chiller when a unit is shipped in one piece, and packed separately for split shipment or for single-piece shipment with unit shipping weight over 70 klbs.
- BROAD can arrange transportation and insurance on behalf of customers. If the customer chooses to arrange by themselves, please refer to "BROAD Chiller Packing & Transportation Regulations" for container arrangement and safe transportation.

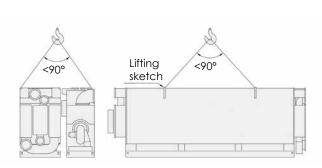
Container arrangement reference:

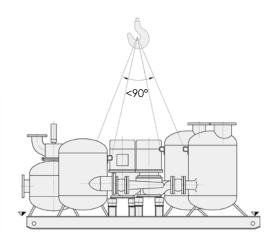
Mode	BZ	With BY pump set	BYZ enclosure	BE	BS(BH)	BZHE	BDH(S)
20	20'GP*	/*	40'HQ(BY20)*	20'GP*	20'GP*	20'GP*	20'GP*
50	20'GP*	/*	40'HQ(BY50)*	20'GP*	20'GP*	20'GP*	40'HQ*
75	40'HQ*	20'GP	40'OT×2	40'HQ*	40'HQ*	40'HQ+20'GP*	40'HQ*
100	40'HQ	20'GP×2	40'OT×2	40'HQ	40'HQ*	40'HQ+20'GP	40'HQ*
125	40'HQ+20'GP	40'GP	40'OT×2	40'HQ+20'GP	40'HQ+20'GP	40'HQ ×2	40'OT*
150	40'OT+20'GP	40'GP	40'OT×2+20'GP	40'OT+20'GP	40'OT	40'OT×2	40'OT*
200	40'OT+20'OT	40'GP+20'GP	40'OT×2+20'GP	40'OT+20'OT	40'OT+20'GP	40'OT×2	40'OT*
250	40'OT×2	40'GP+20'GP	40'OT×2+20'GP	40'OT×2	40'OT×2	40'OT×2	40'OT*
300	40'OT×2	40'GP+20'GP	40'OT×3	40'OT×2+20'GP	40'OT×2	40'OT×2+20'GP	40'OT+20'GP*
400	40'OT×2 +20'GP	40'GP×2	40'OT×3+20'GP	40'OT×2+40'GP	40'OT×2	40'OT×2+40'GP	40'FR+20'GP*
500	40'OT×2 +20'GP	40'GP×2	40'OT×3 +20'GP	40'OT×3	40'OT×2 +20'GP	40'OT×2 +40'GP	40'FR+20'GP*
600	40'FR +40'OT×2 +20'GP	40'GP×2 +20'GP	/	40'FR+40'OT×2 +20'GP	40'FR+40'OT +20'GP	40'FR+40'OT×2 +20'GP	
800	40'FR×2 +40'OT×2 +40'GP	40'GP×3 +20'GP	/	40'FR×2 +40'OT×2 +40'GP+20'GP	40'FR×2 +40'OT +40'GP	40'FR×2+40'OT×2 +40'GP+20'GP	
1000	40'FR×2 +40'OT×2 +40'GP +20'GP	40'GP×3 +20'GP	/	40'FR+40'OT×2 +40'GP×2	40'FR×2 +40'OT×1 +40'GP	40'FR×2+40'OT×2 +40'GP×2	


- 1. Models marked with "*" are in one-piece shipment, and the rest in split shipment.
- 2. For chillers over model 500 (main shell weight exceeds requirement), there might be some changes as per actual condition.
- 3. In case some countries may have limitation on dimension and weight, loading shall be arranged accordingly.
- 4. BCT container arrangement:
 - 20'GP: BCT16: 13 units; or BCT23: 10 units; or BCT70: 3 units; or BCT115: 2 units;
 - 40'GP: BCT16: 13 units; or BCT23: 20 units;
 - 40'HQ: BCT70: 7 units; or BCT115: 4 units.


Lifting & Leveling Tips

- Lifting must be done by qualified riging companies that are properly insured.
- The crane must be supported by crossties and firm foundation to prevent it from sinking. Check the crane steel ropes and hooks before lifting to prevent any accident. The lifting intersection angle must be less than 90°. It is strictly prohibited to lift the chiller with a single steel rope. When the chiller is lifted 0.79 inch above the carriage or the ground, it should be kept for a little while. Lift the chiller slowly if everything is OK.
- The landing of the chiller must be with care. Crash landing is strictly forbidden! As the unit is a vacuum device, any impact on the chiller is strictly forbidden!
- When moving the chiller, only round steels or thick steel tubes can be used as rollers instead of wooden sticks. Only drag the dragging hole on the rolling steel do not place forces on other part of the chiller. Lift the unit first with jacks under the rolling steel before rigging. Both sides of HTG and main shell must be lifted simultaneously.
- Before the chiller is located, concrete foundation plinths must be molded and leveled.
- Then locate the chiller without bolts. (If there is a strong vibration source or a special anti-vibration requirement, it should be stated before ordering). The pumpset shall be fixed by anchor bolts. The foundation must be level and solid to make sure no sink or overload (when the unit is installed on the roof).


- For multiple chillers of split shipment, please make sure the original matching between HTG and the main shell. Please locate the chiller according to chiller joint drawing and make sure the joint gap is less than 0.06 inch.
- After chiller locating, please adjust leveling and lay thin steel plate where it is uneven to guarantee compact contact between the chiller and base. Take tube sheet as the leveling point and make front/rear and left/right leveling (check level height of every part by acrylic tube). It should be leveled within 0.8/1000 both lengthwise and sidewise. Leveling must be done within 2 hours after locating the chiller, otherwise the chiller base will be damaged.
- The chiller must be located levelly and its steel frame bases must match the plinth, the weight of the chiller must be evenly balanced on the plinth. Otherwise, the chiller may be twisted slowly, which will finally result in damage due to leakage.
- The chiller should be protected by full time personnel during transportation & installation. No access to the chiller or valves for unauthorized persons. Valves of the chiller are forbidden to be screwed. If the machine room is under construction, protective measures are needed to avoid damage or dirt to the chiller. Do not scrape the paint or insulation layer.


Sketch of leveling and foundation

Lifting sketch

Comparison

Energy saving comparison

Compared with conventional machine room mode, BROAD packaged pumpset system reduces the rated power demand by 40-60%, and the operating electricity consumption by 60-75% (the electricity for pumpset only amounts to 2-5% of the rated cooling capacity.)

Examples on power consumption comparison

• BY50 type (pumpset for 582kW/165Rt chillers)

Power consuming parts	Conventional machine room mode	e Packaged pumpset	
	power demand	power demand	operating power consumption
Cooling water pump	8.53 RT	2.13 RT	0.57~2.13 RT
Cooling tower fan	3.13 RT	3.13 RT	0.85~3.13 RT
Chilled/heating W pump	6.26 RT	2.13 RT	2.13 RT
Total	17.91 RT	7.39 RT	4.83 RT (annual)
electricity/cooling capacity	10.8%	4.47%	2.92%
Annual operating consumption	54023 RT	14785 RT (pov	ver saving is 73%)

• BY300 type (pumpset for 3489kW/992Rt chillers)

Annual operating consumption	284333 RT	85300 RT (pov	wer saving is 70%)	
Electricity/cooling capacity	9.4%	4.04%	2.86%	
Total	92.98 RT	40.1 RT	28.43 RT (annual)	
Chilled/heating W pump	31.28 RT	17.06 RT	8.53~17.06 RT	
Cooling tower fan	10.52 RT	10.52 RT	1.71~10.52 RT	
Cooling capacity	51.18 RT	12.51 RT	3.13~12.51 RT	
	power demand	power demand	operating power consumption	
Power consumption equipment	Conventional machine room type	Packaged pumpset system		
** ** *	,			

• BY1000 type (pumpset for 11630kW/3307Rt chillers)

Power consumption equipment	Conventional machine room type	Packaged pump	oset system
	power demand	power demand	operating power consumption
Cooling capacity	156.38 RT	51.18 RT	8.53~51.18 RT
Cooling tower fan	31.28 RT	31.28 RT	6.26~31.28 RT
Chilled/heating W pump	125.1 RT	51.18 RT	25.59~51.18 RT
Total	312.77 RT	133.64 RT	71.08 RT (annual)
Electricity/cooling capacity	9.5%	4.04%	2.15%
Annual operating consumption	938300 RT	213250 RT (pc	ower saving is 77%)

Notes:

- 1. Calculation of annual operating power consumption is based upon cooling operation, 5 months per year and 20 hours per day.
- 2. Operating consumption is the result of using inverters and shifting between two pumps, while the power consumption of conventional pump system equals to the power demand.

Why electricity saving?

- Saving from design:
 - 1. Many innovations reduce the resistance from filters, valves and piping to almost zero.
 - 2. Specially designed pumps optimize head and flow rate to system design.
- Saving from operation:
 - BROAD leads the world in inverter control system design and operation. Standard designs incorporate invertercontrolled cooling water pump(s) and cooling tower fan(s) which are automatically adjusted according to load and ambient temperature.
 - 2. Two pumps combined or separate operation by software analyzer.
 - 3. Actual power consumption during operation is 30~60% of the rated design.

BROAD central air conditioning has obtained all certification of ISO,CE, UL, ETL, ASME, and other international certication

BROAD AIR CONDITIONING 远大空调有限公司

Hackensack office: 401 Hackensack Ave, Suite 503, Hackensack, NJ 07601

Tel: 201-678-3010 Fax: 201-678-3011 www.broadusa.com CA office:

750 Terrado Plaza, Suite 243 Covina, CA 91723

Tel: (626)967-8651 Fax: (626)967-8654

To preserve forest & water sources, pls imitate us to adopt compact layout & thin paper printing

2013.09 The Second Edition Quantity: 2,000 BY164-13 © 2013